IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i9p108-d407783.html
   My bibliography  Save this article

A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System

Author

Listed:
  • Mariusz Starzec

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland)

  • Józef Dziopak

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland)

Abstract

To determine the effectiveness of the retention capacity utilization of traditional and innovative drainage systems equipped with damming partitions, the detailed model tests were carried out. The research results allowed indicating what values of the hydraulic parameter of the innovative drainage system should be adopted in order to effectively use the retention capacity of drainage collectors. The adoption of short distances between the LKR damming partitions and a high level of permissible rainfall of stormwater Hper turned out to be the most effective solution. In the most favorable conditions, the peak flow was reduced by up to 60% (717.46 dm 3 /s) compared to the values established in the traditional drainage system (1807.62 dm 3 /s). The benefits obtained resulted from the increased retention efficiency of the drainage system after equipping it with the damming partitions. It was found that the innovative system always achieved the maximum retention capacity with longer rainfall compared to the traditional system. In the real catchment area, an increase in the use of the retention capacity of the drainage system, from an initial value of 65% for a traditional system to almost 88% for an innovative system, was also found. Very large variability of the volume of accumulated stormwater in the conduits of the traditional and innovative drainage system was observed during rainfall, which generated the peak rainfall discharge in the innovative system. With rainfall of TRK duration, the innovative system accumulated up to 746.50 m 3 more stormwater compared to a traditional system, which was 49.2% of the total retention capacity of the drainage system, with a value of 1515.76 m 3 . The approach to reduce the growing flood risk in cities provided the right approach to long-term urban drainage system planning, especially since traditional drainage systems are still the leading way to transport stormwater in cities. In addition, the innovative sewage system gives the possibility of favorable cooperation with any objects (LID) and retention tanks with any hydraulic model. The implementation of an innovative system allows achieving significant financial savings and reducing the need to reserve areas designated for infrastructure investments.

Suggested Citation

  • Mariusz Starzec & Józef Dziopak, 2020. "A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System," Resources, MDPI, vol. 9(9), pages 1-19, September.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:108-:d:407783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/9/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/9/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tone M. Muthanna & Edvard Sivertsen & Dennis Kliewer & Lensa Jotta, 2018. "Coupling Field Observations and Geographical Information System (GIS)-Based Analysis for Improved Sustainable Urban Drainage Systems (SUDS) Performance," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    2. Blal Adem Esmail & Lina Suleiman, 2020. "Analyzing Evidence of Sustainable Urban Water Management Systems: A Review through the Lenses of Sociotechnical Transitions," Sustainability, MDPI, vol. 12(11), pages 1-45, June.
    3. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    4. Sara Todeschini & Sergio Papiri & Carlo Ciaponi, 2018. "Placement Strategies and Cumulative Effects of Wet-weather Control Practices for Intermunicipal Sewerage Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2885-2900, June.
    5. Mo Wang & Dong Qing Zhang & Appan Adhityan & Wun Jern Ng & Jian Wen Dong & Soon Keat Tan, 2018. "Conventional and holistic urban stormwater management in coastal cities: a case study of the practice in Hong Kong and Singapore," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(2), pages 192-212, March.
    6. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    7. Sabina Kordana & Daniel Słyś, 2020. "Decision Criteria for the Development of Stormwater Management Systems in Poland," Resources, MDPI, vol. 9(2), pages 1-21, February.
    8. Marjana Šijanec Zavrl & Mine Tanac Zeren, 2010. "Sustainability of Urban Infrastructures," Sustainability, MDPI, vol. 2(9), pages 1-15, September.
    9. Sonja Knapp & Sebastian Schmauck & Andreas Zehnsdorf, 2019. "Biodiversity Impact of Green Roofs and Constructed Wetlands as Progressive Eco-Technologies in Urban Areas," Sustainability, MDPI, vol. 11(20), pages 1-26, October.
    10. Trisha L. Moore & John S. Gulliver & Latham Stack & Michael H. Simpson, 2016. "Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts," Climatic Change, Springer, vol. 138(3), pages 491-504, October.
    11. Jiansheng Wu & Ying Chen & Rui Yang & Yuhao Zhao, 2020. "Exploring the Optimal Cost-Benefit Solution for a Low Impact Development Layout by Zoning, as Well as Considering the Inundation Duration and Inundation Depth," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
    2. Kamil Pochwat, 2022. "Assessment of Rainwater Retention Efficiency in Urban Drainage Systems—Model Studies," Resources, MDPI, vol. 11(2), pages 1-23, January.
    3. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    4. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    5. Ulf Stein & Benedict Bueb & Gabrielle Bouleau & Gaële Rouillé-Kielo, 2023. "Making Urban Water Management Tangible for the Public by Means of Digital Solutions," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    6. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    7. Stephanie A. Siehr & Minmin Sun & José Luis Aranda Nucamendi, 2022. "Blue‐green infrastructure for climate resilience and urban multifunctionality in Chinese cities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    8. Wei Li & Bao-Jie He & Jinda Qi & Jianwen Dong, 2018. "Water Conservation Scenic Spots in China: Developing the Tourism Potential of Hydraulic Projects and Water Resources," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
    9. Bridget Thodesen & Berit Time & Tore Kvande, 2022. "Sustainable Urban Drainage Systems: Themes of Public Perception—A Case Study," Land, MDPI, vol. 11(4), pages 1-19, April.
    10. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    11. Anna Thoms & Stephan Köster, 2022. "Potentials for Sponge City Implementation in Sub-Saharan Africa," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    12. Rajesh Kumar Vishwakarma & Himanshu Joshi & Ashantha Goonetilleke, 2023. "Sustainability Evaluation of the Stormwater Drainage System in Six Indian Cities," Sustainability, MDPI, vol. 15(20), pages 1-27, October.
    13. Giulio Senes & Paolo Stefano Ferrario & Gianpaolo Cirone & Natalia Fumagalli & Paolo Frattini & Giovanna Sacchi & Giorgio Valè, 2021. "Nature-Based Solutions for Storm Water Management—Creation of a Green Infrastructure Suitability Map as a Tool for Land-Use Planning at the Municipal Level in the Province of Monza-Brianza (Italy)," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    14. Rafael Molinaro & Mohammad K. Najjar & Ahmed W. A. Hammad & Assed Haddad & Elaine Vazquez, 2020. "Urban Development Index (UDI): A Comparison between the City of Rio de Janeiro and Four Other Global Cities," Sustainability, MDPI, vol. 12(3), pages 1-25, January.
    15. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    16. Antonia Longobardi & Roberta D’Ambrosio & Mirka Mobilia, 2019. "Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    17. Hana Brunhoferova & Silvia Venditti & Cédric C. Laczny & Laura Lebrun & Joachim Hansen, 2022. "Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    18. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    19. Xinyu Liu & Daan Schraven & Mark de Bruijne & Martin de Jong & Marcel Hertogh, 2019. "Navigating Transitions for Sustainable Infrastructures—The Case of a New High-Speed Railway Station in Jingmen, China," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    20. Anna Lempart-Rapacewicz & Julia Zakharova & Edyta Kudlek, 2023. "Rainwater Quality Analysis for Its Potential Recovery: A Case Study on Its Usage for Swimming Pools in Poland," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:108-:d:407783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.