IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i8p94-d398919.html
   My bibliography  Save this article

Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues

Author

Listed:
  • Alessio Ilari

    (Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche Via Brecce Bianche, 60131 Ancona, Italy)

  • Giuseppe Toscano

    (Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche Via Brecce Bianche, 60131 Ancona, Italy)

  • Ester Foppa Pedretti

    (Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche Via Brecce Bianche, 60131 Ancona, Italy)

  • Sara Fabrizi

    (Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche Via Brecce Bianche, 60131 Ancona, Italy)

  • Daniele Duca

    (Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche Via Brecce Bianche, 60131 Ancona, Italy)

Abstract

The impact of heat production from vineyard pruning pellets has been evaluated in this paper. The study considers two different systems: the first one based on a mobile pelletizer (PS1) and the second one based on a stationary pellet plant (PS2). The analysis conducted is from “cradle to grave”; the systems under analysis includes pruning harvesting, transport to storage area, pelletization (mobile system or stationary production plant), transport to consumer and combustion. The functional unit selected is 1 MJ of thermal energy produced. The impact assessment calculation methods selected are Eco-Indicator 99 (H) LCA Food V2.103/Europe EI 99 H/A with a midpoint and endpoint approach, and ReCiPe Midpoint (H) V1.10. Considering Life Cycle Assessment results, Eco-indicator shows a total impact of 4.25 and 4.07 mPt for mobile pelletizer and stationary pellet plant, respectively. Considering the three damage categories, PS1 has values of 2.4% (Human Health), 3.8% (Ecosystem Quality) and 17.3% (Resources), more impactful than PS2. Contribution analysis shows that direct emissions are the major damage contributor, followed by wood ash management. From a comparison between the baseline scenario and a scenario with an avoided product (wood ash as a standard potassium fertilizer), PS1 and PS2 with an avoided product approach are 41% and 40% less impactful than in the baseline scenarios. When testing the impact of mobile pelletizer while considering transportation as a factor, a reduction of distance for pellet has been evaluated. Reducing the distance from 100 to 10 km, the total impact of PS1 almost reaches the impact of PS2 with a difference of around 4.6% (Eco-indicator 99 method). The most impactful processes are pellet production, direct emissions and ash management, while a less impactful factor is the electricity consumption. Transportation shows the lowest impact. Considering the ReCiPe impact calculation method with a midpoint approach, the results confirm what was found with Eco-indicator 99; the PS1 shows a slightly higher impact than PS2.

Suggested Citation

  • Alessio Ilari & Giuseppe Toscano & Ester Foppa Pedretti & Sara Fabrizi & Daniele Duca, 2020. "Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues," Resources, MDPI, vol. 9(8), pages 1-14, August.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:8:p:94-:d:398919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/8/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/8/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Bisaglia & Massimo Brambilla & Maurizio Cutini & Antonio Bortolotti & Guido Rota & Giorgio Minuti & Roberto Sargiani, 2018. "Reusing Pruning Residues for Thermal Energy Production: A Mobile App to Match Biomass Availability with the Heating Energy Balance of Agro-Industrial Buildings," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Pizzi, A. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Mancini, M. & Toscano, G., 2018. "Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects," Renewable Energy, Elsevier, vol. 121(C), pages 513-520.
    3. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    4. Giuseppe Toscano & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2018. "Pelleting Vineyard Pruning at Low Cost with a Mobile Technology," Energies, MDPI, vol. 11(9), pages 1-17, September.
    5. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    6. Zawiślak, Kazimierz & Sobczak, Paweł & Kraszkiewicz, Artur & Niedziółka, Ignacy & Parafiniuk, Stanisław & Kuna-Broniowska, Izabela & Tanaś, Wojciech & Żukiewicz-Sobczak, Wioletta & Obidziński, Sławomi, 2020. "The use of lignocellulosic waste in the production of pellets for energy purposes," Renewable Energy, Elsevier, vol. 145(C), pages 997-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Toscano & Carmine De Francesco & Thomas Gasperini & Sara Fabrizi & Daniele Duca & Alessio Ilari, 2023. "Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels," Resources, MDPI, vol. 12(6), pages 1-22, May.
    2. Giusilene Costa de Souza Pinho & João Luiz Calmon, 2023. "LCA of Wood Waste Management Systems: Guiding Proposal for the Standardization of Studies Based on a Critical Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Pergher & Rino Gubiani & Matia Mainardis, 2019. "Field Testing of a Biomass-Fueled Flamer for In-Row Weed Control in the Vineyard," Agriculture, MDPI, vol. 9(10), pages 1-11, September.
    2. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    3. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Alessandro Sopegno & Patrizia Busato, 2019. "Green, Yellow, and Woody Biomass Supply-Chain Management: A Review," Energies, MDPI, vol. 12(15), pages 1-22, August.
    4. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    6. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    7. Jesús Marquina & María José Colinet & María del P. Pablo-Romero, 2021. "Measures to Promote Olive Grove Biomass in Spain and Andalusia: An Opportunity for Economic Recovery against COVID-19," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    8. Pietro Pandolfi & Ivan Notardonato & Sergio Passarella & Maria Pia Sammartino & Giovanni Visco & Paolo Ceci & Loretta De Giorgi & Virgilio Stillittano & Domenico Monci & Pasquale Avino, 2023. "Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach," IJERPH, MDPI, vol. 20(16), pages 1-14, August.
    9. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    10. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    11. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    12. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    13. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    14. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    15. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    16. Pietro Denisi & Nicola Biondo & Giuseppe Bombino & Adele Folino & Demetrio Antonio Zema & Santo Marcello Zimbone, 2021. "A Combined System Using Lagoons and Constructed Wetlands for Swine Wastewater Treatment," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    17. Ahmad Rashedi & Irfan Ullah Muhammadi & Rana Hadi & Syeda Ghufrana Nadeem & Nasreen Khan & Farzana Ibrahim & Mohamad Zaki Hassan & Taslima Khanam & Byongug Jeong & Majid Hussain, 2022. "Characterization and Life Cycle Exergo-Environmental Analysis of Wood Pellet Biofuel Produced in Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    19. Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
    20. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:8:p:94-:d:398919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.