IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005657.html
   My bibliography  Save this article

The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)

Author

Listed:
  • Marquina, Jesús
  • Colinet, María José
  • Pablo-Romero, María del P.

Abstract

Olive sector residues could contribute to increased use of renewable energies, especially in those areas where the olive crop is produced. This paper determines the maximum amount of electrical and thermal energy which could be obtained in Andalusia from olive sector residues, and the economic value that could be obtained from these energy uses. For this, the current data on installed power and electrical and thermal generation are compared with the calculated potential data which would be obtained at full capacity. The results show there is a 69.23% wastage of olive sector residues for energy purposes. Thus, using the resources at full capacity, 3.9 million tons of biomass per year could be obtained for energy purposes. Currently, only 2 million tons of biomass are used for energy purposes. This wastage translates into a below potential generation of electrical and thermal energy. The full use of these residues would allow 83.9% and 64.9% higher generation of electrical and thermal energy, respectively. The results obtained also show that the economic value of olive sector biomass is higher than the market price value, with the average values for each use being 248.20 €/t for domestic thermal use, 165.04 €/t for electrical use and 139.50 €/t for industrial thermal use. Thus, it is considered feasible that the olive sector biomass could be used to a greater degree than at present. In this sense, it is recommended that more electricity generation plants and thermal-generating systems be put into operation.

Suggested Citation

  • Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005657
    DOI: 10.1016/j.rser.2021.111278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosúa, J.M. & Pasadas, M., 2012. "Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4190-4195.
    2. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    3. Palianychko N.I. & Olkhovych S.Ya. & Krokhtiak О., 2019. "Analysis Of The Production Of Medicinal Plants In Ukrain," Balanced Nature Using, Institute of agroecology and environmental management, vol. 8(2), pages 81-88, May.
    4. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    5. Kes McCormick & Niina Kautto, 2013. "The Bioeconomy in Europe: An Overview," Sustainability, MDPI, vol. 5(6), pages 1-20, June.
    6. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    7. J Berbel & A Posadillo, 2018. "Opportunities for the Bioeconomy of Olive Oil Byproducts," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 2(1), pages 2094-2096, January.
    8. Julio Berbel & Alejandro Posadillo, 2018. "Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products," Sustainability, MDPI, vol. 10(1), pages 1-9, January.
    9. Spyridon Alatzas & Konstantinos Moustakas & Dimitrios Malamis & Stergios Vakalis, 2019. "Biomass Potential from Agricultural Waste for Energetic Utilization in Greece," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Arias, J. & Gómez, X. & González-Castaño, M. & Sánchez, M.E. & Rosas, J.G. & Cara-Jiménez, J., 2022. "Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning," Energy, Elsevier, vol. 238(PC).
    2. Jesús Marquina & María José Colinet & María del P. Pablo-Romero, 2021. "Measures to Promote Olive Grove Biomass in Spain and Andalusia: An Opportunity for Economic Recovery against COVID-19," Sustainability, MDPI, vol. 13(20), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Marquina & María José Colinet & María del P. Pablo-Romero, 2021. "Measures to Promote Olive Grove Biomass in Spain and Andalusia: An Opportunity for Economic Recovery against COVID-19," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    2. Julio Berbel & Alejandro Posadillo, 2018. "Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products," Sustainability, MDPI, vol. 10(1), pages 1-9, January.
    3. Zetterholm, Jonas & Mossberg, Johanna & Jafri, Yawer & Wetterlund, Elisabeth, 2022. "We need stable, long-term policy support! — Evaluating the economic rationale behind the prevalent investor lament for forest-based biofuel production," Applied Energy, Elsevier, vol. 318(C).
    4. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    5. Knápek, Jaroslav & Králík, Tomáš & Vávrová, Kamila & Weger, Jan, 2020. "Dynamic biomass potential from agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Do, Quynh & Ramudhin, Amar & Colicchia, Claudia & Creazza, Alessandro & Li, Dong, 2021. "A systematic review of research on food loss and waste prevention and management for the circular economy," International Journal of Production Economics, Elsevier, vol. 239(C).
    7. Vlada Vitunskienė & Akvilė Aleksandravičienė & Neringa Ramanauskė, 2022. "Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    8. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    9. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    10. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    11. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    13. Jia, Wenlong & Yang, Fan & Li, Changjun & Huang, Ting & Song, Shuoshuo, 2021. "A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa," Energy, Elsevier, vol. 230(C).
    14. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    15. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    16. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    18. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    20. Iureş Mugur Victor Constantin, 2020. "Bioeconomy’s sectors and strategies in Central and Eastern European countries. A literature review," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 14(1), pages 83-90, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.