IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v4y2015i2p398-411d51321.html
   My bibliography  Save this article

Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

Author

Listed:
  • Ana Susmozas

    (Systems Analysis Unit, Instituto IMDEA Energía, Av. Ramón de la Sagra 3, Móstoles E-28935, Spain
    These authors contributed equally to this work.)

  • Diego Iribarren

    (Systems Analysis Unit, Instituto IMDEA Energía, Av. Ramón de la Sagra 3, Móstoles E-28935, Spain
    These authors contributed equally to this work.)

  • Javier Dufour

    (Systems Analysis Unit, Instituto IMDEA Energía, Av. Ramón de la Sagra 3, Móstoles E-28935, Spain
    Department of Chemical and Energy Technology, Rey Juan Carlos University, St. Tulipán s/n, Móstoles E-28933, Spain)

Abstract

Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus ® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable) energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected) relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

Suggested Citation

  • Ana Susmozas & Diego Iribarren & Javier Dufour, 2015. "Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe," Resources, MDPI, vol. 4(2), pages 1-14, June.
  • Handle: RePEc:gam:jresou:v:4:y:2015:i:2:p:398-411:d:51321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/4/2/398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/4/2/398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Xu, Yujie, 2014. "Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 950-960.
    2. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    3. Chaubey, Rashmi & Sahu, Satanand & James, Olusola O. & Maity, Sudip, 2013. "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 443-462.
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    5. Vlysidis, Anestis & Binns, Michael & Webb, Colin & Theodoropoulos, Constantinos, 2011. "A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals," Energy, Elsevier, vol. 36(8), pages 4671-4683.
    6. Sun, Shaohui & Yan, Wei & Sun, Peiqin & Chen, Junwu, 2012. "Thermodynamic analysis of ethanol reforming for hydrogen production," Energy, Elsevier, vol. 44(1), pages 911-924.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Donke & Alex Nogueira & Patricia Matai & Luiz Kulay, 2016. "Environmental and Energy Performance of Ethanol Production from the Integration of Sugarcane, Corn, and Grain Sorghum in a Multipurpose Plant," Resources, MDPI, vol. 6(1), pages 1-19, December.
    2. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    2. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    3. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    4. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    6. Baruah, Renika & Dixit, Marm & Basarkar, Pratik & Parikh, Dhrupad & Bhargav, Atul, 2015. "Advances in ethanol autothermal reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1345-1353.
    7. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    8. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    9. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    10. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    11. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    12. Sánchez-Arreola, Eugenio & Martin-Torres, Gerardo & Lozada-Ramírez, José D. & Hernández, Luis R. & Bandala-González, Erick R. & Bach, Horacio, 2015. "Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas," Renewable Energy, Elsevier, vol. 76(C), pages 143-147.
    13. Shunli Feng & Yihan Guo & Yulu Ran & Qingzhuoma Yang & Xiyue Cao & Huahao Yang & Yu Cao & Qingrui Xu & Dairong Qiao & Hui Xu & Yi Cao, 2023. "Production of Microbial Lipids by Saitozyma podzolica Zwy2-3 Using Corn Straw Hydrolysate, the Analysis of Lipid Composition, and the Prediction of Biodiesel Properties," Energies, MDPI, vol. 16(18), pages 1-22, September.
    14. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    15. Ruxandra-Cristina Stanescu & Cristian-Ioan Leahu & Adrian Soica, 2023. "Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor," Energies, MDPI, vol. 16(6), pages 1-17, March.
    16. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    17. Spallina, V. & Matturro, G. & Ruocco, C. & Meloni, E. & Palma, V. & Fernandez, E. & Melendez, J. & Pacheco Tanaka, A.D. & Viviente Sole, J.L. & van Sint Annaland, M. & Gallucci, F., 2018. "Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design," Energy, Elsevier, vol. 143(C), pages 666-681.
    18. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    20. Rawat, Devendra S. & Joshi, Girdhar & Lamba, Bhawna Y. & Tiwari, Avanish K. & Kumar, Pankaj, 2015. "The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels," Energy, Elsevier, vol. 84(C), pages 643-655.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:4:y:2015:i:2:p:398-411:d:51321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.