IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1163-d1374758.html
   My bibliography  Save this article

Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation

Author

Listed:
  • Tzu-Hsin Liu

    (Department of Finance, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan)

  • Kuo-Ching Chiou

    (Department of Finance, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan)

  • Chih-Ming Chen

    (Ph.D. Program of Business Administration in Industrial Development, Department of Business Administration, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan)

  • Fu-Min Chang

    (Department of Finance, Chaoyang University of Technology, 168, Jifeng East Road, Wufeng District, Taichung City 41349, Taiwan)

Abstract

This work investigates a two-way communication retrial queue with synchronous working vacation and a constant retrial policy. During the idle time, a server makes an outgoing call after a random length. The service time of the incoming call and outgoing call obeys exponential distribution with different rates. If the incoming call finds all servers to be unavailable, it may or may not enter orbit. All servers immediately go on vacation simultaneously as soon as they find an empty system after the service finishes. During vacation, the servers can provide a service to those incoming calls, but this is at a lower-speed rate. The stationary probability distribution and the ergodic condition are obtained utilizing the matrix geometric technique. Some system characteristics are developed. Using MATLAB software, the variation in average orbit length, idle ratio, and the average number of servers in different server states is plotted for different values of the incoming/outgoing call rate and retrial rate. We further propose a multi-objective optimization model from which the optimal rate of outgoing calls and optimal vacation rate are explicitly obtained.

Suggested Citation

  • Tzu-Hsin Liu & Kuo-Ching Chiou & Chih-Ming Chen & Fu-Min Chang, 2024. "Multiserver Retrial Queue with Two-Way Communication and Synchronous Working Vacation," Mathematics, MDPI, vol. 12(8), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1163-:d:1374758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muthukrishnan Senthil Kumar & Aresh Dadlani & Kiseon Kim, 2020. "Performance analysis of an unreliable M/G/1 retrial queue with two-way communication," Operational Research, Springer, vol. 20(4), pages 2267-2280, December.
    2. Dong-Yuh Yang & Chia-Huang Wu, 2019. "Performance analysis and optimization of a retrial queue with working vacations and starting failures," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(5), pages 463-481, September.
    3. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    4. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    5. Se Won Lee & Bara Kim & Jeongsim Kim, 2022. "Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication," Annals of Operations Research, Springer, vol. 310(2), pages 505-518, March.
    6. Sundararaman Muthusamy & Narasimhan Devadoss & Sherif I. Ammar & Filippo Cacace, 2022. "Reliability and Optimization Measures of Retrial Queue with Different Classes of Customers under a Working Vacation Schedule," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-17, October.
    7. M. Sundararaman & D. Narasimhan & P. Rajadurai & Antonio Di Crescenzo, 2024. "Performance Analysis of Two Different Types of Waiting Queues with Working Vacations," Journal of Mathematics, Hindawi, vol. 2024, pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    3. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    4. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    5. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    6. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    7. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    8. Se Won Lee & Bara Kim & Jeongsim Kim, 2022. "Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication," Annals of Operations Research, Springer, vol. 310(2), pages 505-518, March.
    9. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    10. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    11. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    12. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    13. Anatoly Nazarov & János Sztrik & Anna Kvach & Ádám Tóth, 2020. "Asymptotic sojourn time analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 288(1), pages 417-434, May.
    14. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    15. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    16. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    17. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.
    18. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    19. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    20. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1163-:d:1374758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.