IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p1057-d1074459.html
   My bibliography  Save this article

Numerical Study of a Phase Change Material Energy Storage Tank Working with Carbon Nanotube–Water Nanofluid under Ha’il City Climatic Conditions

Author

Listed:
  • Lioua Kolsi

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 81541, Saudi Arabia)

  • Ahmed Kadhim Hussein

    (Mechanical Engineering Department, College of Engineering, University of Babylon, Hilla 51002, Iraq)

  • Walid Hassen

    (Laboratory of Metrology and Energy Systems, Department of Energy Engineering, University of Monastir, Monastir 5000, Tunisia)

  • Lotfi Ben Said

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 81541, Saudi Arabia
    Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia)

  • Badreddine Ayadi

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 81541, Saudi Arabia
    Laboratory of Applied Fluid Mechanics, Environment and Process Engineering “LR11ES57”, National School of Engineers of Sfax (ENIS), University of Sfax, Soukra Road Km 3.5, Sfax 3038, Tunisia)

  • Wajdi Rajhi

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 81541, Saudi Arabia
    Laboratoire de Mécanique, Matériaux et Procédés LR99ES05, Ecole Nationale Supérieure d’Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, Montfleury, Tunis 1008, Tunisia)

  • Taher Labidi

    (Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia)

  • Ali Shawabkeh

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Katta Ramesh

    (Department of Pure and Applied Mathematics, School of Mathematical Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia
    Symbiosis Institute of Technology, Symbiosis International University, Pune 412115, India)

Abstract

A numerical investigation of a phase change material (PCM) energy storage tank working with carbon nanotube (CNT)–water nanofluid is performed. The study was conducted under actual climatic conditions of the Ha’il region (Saudi Arabia). Two configurations related to the absence or presence of conductive baffles are studied. The tank is filled by encapsulated paraffin wax as the PCM, and CNT–water nanofluid flows through the capsules. The main goal is to increase the temperature of the PCM to 70 °C in order to store the thermal energy, which can then be used during the night and cloudy weather. Numerical computations are made using the finite element method (FEM) based on actual measured weather conditions. Climate conditions were collected from a weather station located on the roof of the engineering college’s building at the University of Ha’il. The collected data served as input to the numerical model, and the simulations were performed for three months (December, March, and July). The solid CNT volume fraction range was (0 ≤ ϕ ≤ 0.05) and the nanofluid volume flow rate ranged was (0.5 L/min ≤ V ≤ 3 L/min). For both considered cases (with and without baffles), it was found that the use of CNT–nanofluid led to a reduction in the charging time and enhanced its performance. An increase in the volumetric flow rate was found to accelerate the melting process. The best performances of the storage tank occurred during July due to the highest solar irradiation. Furthermore, it was found that the use of baffles had no beneficial effects on the melting process.

Suggested Citation

  • Lioua Kolsi & Ahmed Kadhim Hussein & Walid Hassen & Lotfi Ben Said & Badreddine Ayadi & Wajdi Rajhi & Taher Labidi & Ali Shawabkeh & Katta Ramesh, 2023. "Numerical Study of a Phase Change Material Energy Storage Tank Working with Carbon Nanotube–Water Nanofluid under Ha’il City Climatic Conditions," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1057-:d:1074459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/1057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/1057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    2. Delgado, M. & Lázaro, A. & Mazo, J. & Peñalosa, C. & Marín, J.M. & Zalba, B., 2017. "Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system," Energy, Elsevier, vol. 138(C), pages 590-601.
    3. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    4. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    5. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    6. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    7. Mandal, Swaroop Kumar & Kumar, Samarjeet & Singh, Purushottam Kumar & Mishra, Santosh Kumar & Singh, D.K., 2020. "Performance investigation of nanocomposite based solar water heater," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    2. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    3. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    4. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    5. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    6. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    7. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    8. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    9. Dacheng Li & Yulong Ding & Peilun Wang & Shuhao Wang & Hua Yao & Jihong Wang & Yun Huang, 2019. "Integrating Two-Stage Phase Change Material Thermal Storage for Cascaded Waste Heat Recovery of Diesel-Engine-Powered Distributed Generation Systems: A Case Study," Energies, MDPI, vol. 12(11), pages 1-20, June.
    10. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
    13. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    15. Abdelwaheb Trigui & Makki Abdelmouleh, 2023. "Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Chaomurilige & Geng Qiao & Peng Zhao & Yang Li & Yongliang Li, 2023. "Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi 12 Alloy," Energies, MDPI, vol. 16(15), pages 1-22, July.
    17. Hajmohammadi, M.R. & Toghraei, I., 2018. "Optimal design and thermal performance improvement of a double-layered microchannel heat sink by introducing Al2O3 nano-particles into the water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 328-344.
    18. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    19. Boroojerdian, Ashkan & Nemati, H. & Selahi, Ehsan, 2023. "Direct and non-contact measurement of liquid fraction in unconstrained encapsulated PCM melting," Energy, Elsevier, vol. 284(C).
    20. Mao, Qianjun & Zhang, Yufei, 2023. "Effect of unsteady heat source condition on thermal performance for cascaded latent heat storage packed bed," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1057-:d:1074459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.