IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2854-d1179305.html
   My bibliography  Save this article

The Evolution of Probability Density Function for Power System Excited by Fractional Gaussian Noise

Author

Listed:
  • Hufei Li

    (School of Mathematics and Information Science & Ningxia Key Laboratory of Intelligent Information and Big Data Processing, North Minzu University, Yinchuan 750021, China)

  • Shaojuan Ma

    (School of Mathematics and Information Science & Ningxia Key Laboratory of Intelligent Information and Big Data Processing, North Minzu University, Yinchuan 750021, China)

Abstract

This article is devoted to investigating the evolution of the probability density function for power system excited by fractional stochastic noise. First, the single-machine-infinite-bus (SMIB) power system model excited by fractional Gaussian noise (FGN) is established. Second, we derive the Fokker–Planck–Kolmogorov (FPK) equation for the proposed model and solve the FPK equation using the finite difference method. Finally, the numerical results verify that the addition of FGN would influence dynamical stability of the SMIB power system under certain conditions.

Suggested Citation

  • Hufei Li & Shaojuan Ma, 2023. "The Evolution of Probability Density Function for Power System Excited by Fractional Gaussian Noise," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2854-:d:1179305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baudoin, Fabrice & Coutin, Laure, 2007. "Operators associated with a stochastic differential equation driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 117(5), pages 550-574, May.
    2. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    3. Stefan Rostek, 2009. "Option Pricing in Fractional Brownian Markets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-00331-8, October.
    4. Stefan Rostek, 2009. "Risk Preference Based Option Pricing in a Continuous Time Fractional Brownian Market," Lecture Notes in Economics and Mathematical Systems, in: Option Pricing in Fractional Brownian Markets, chapter 5, pages 79-110, Springer.
    5. Xue Lin & Lixia Sun & Ping Ju & Hongyu Li, 2019. "Stochastic Control for Intra-Region Probability Maximization of Multi-Machine Power Systems Based on the Quasi-Generalized Hamiltonian Theory," Energies, MDPI, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    2. Abbritti, Mirko & Carcel, Hector & Gil-Alana, Luis & Moreno, Antonio, 2023. "Term premium in a fractionally cointegrated yield curve," Journal of Banking & Finance, Elsevier, vol. 149(C).
    3. Sharon Kozicki & Peter A. Tinsley, "undated". "Moving Endpoints in Macrofinance," Computing in Economics and Finance 1996 _058, Society for Computational Economics.
    4. Kozicki, Sharon & Tinsley, P. A., 2001. "Term structure views of monetary policy under alternative models of agent expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 149-184, January.
    5. Guglielmo Maria Caporale & Hector Carcel & Luis A. Gil-Alana, 2015. "Modelling African inflation rates: nonlinear deterministic terms and long-range dependence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 421-424, March.
    6. David K. Backus & Stanley E. Zin, 1994. "Reverse Engineering the Yield Curve," Working Papers 94-09, New York University, Leonard N. Stern School of Business, Department of Economics.
    7. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    8. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    9. Luis Gil-Alana, 2003. "Strong dependence in the real interest rates," Applied Economics, Taylor & Francis Journals, vol. 35(2), pages 119-124.
    10. Carlos Barros & Guglielmo Maria Caporale & Luis Gil-Alana, 2014. "Long Memory in Angolan Macroeconomic Series: Mean Reversion versus Explosive Behaviour," African Development Review, African Development Bank, vol. 26(1), pages 59-73.
    11. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
    12. Sreekar Vadlamani, 2010. "Fractional Brownian Flows," Journal of Theoretical Probability, Springer, vol. 23(1), pages 257-276, March.
    13. Zhongxing Wang & Yan Yan & Xiaosong Chen, 2016. "Long-range Correlation and Market Segmentation in Bond Market," Papers 1610.09812, arXiv.org.
    14. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    15. Guglielmo Maria Caporale & Luis Alberiko Gil‐Alana & Tommaso Trani, 2022. "On the persistence of UK inflation: A long‐range dependence approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 439-454, January.
    16. Araya, Héctor & Bahamonde, Natalia & Torres, Soledad & Viens, Frederi, 2019. "Donsker type theorem for fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 1-8.
    17. Robert A. Connolly & Z. Nuray G‹Ner & Kenneth N. Hightower, 2007. "Evidence on the Extent and Potential Sources of Long Memory in U.S. Treasury Security Returns and Yields," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 689-702, March.
    18. Asai Manabu & Peiris Shelton & McAleer Michael & Allen David E., 2020. "Cointegrated Dynamics for a Generalized Long Memory Process: Application to Interest Rates," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-18, January.
    19. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    20. Guglielmo Maria Caporale & Luis Alberiko Gil-Alaña, 2011. "Interest rate dynamics in Kenya," NCID Working Papers 10/2011, Navarra Center for International Development, University of Navarra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2854-:d:1179305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.