IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4671-d998884.html
   My bibliography  Save this article

Bootstrapping Not Independent and Not Identically Distributed Data

Author

Listed:
  • Martin Hrba

    (Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 49/83, 18675 Prague, Czech Republic)

  • Matúš Maciak

    (Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 49/83, 18675 Prague, Czech Republic)

  • Barbora Peštová

    (Department of Statistical Modelling, Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 271/2, 18207 Prague, Czech Republic)

  • Michal Pešta

    (Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 49/83, 18675 Prague, Czech Republic)

Abstract

Classical normal asymptotics could bring serious pitfalls in statistical inference, because some parameters appearing in the limit distributions are unknown and, moreover, complicated to estimated (from a theoretical as well as computational point of view). Due to this, plenty of stochastic approaches for constructing confidence intervals and testing hypotheses cannot be directly applied. Bootstrap seems to be a plausible alternative. A methodological framework for bootstrapping not independent and not identically distributed data is presented together with theoretical justification of the proposed procedures. Among others, bootstrap laws of large numbers and central limit theorems are provided. The developed methods are utilized in insurance and psychometry.

Suggested Citation

  • Martin Hrba & Matúš Maciak & Barbora Peštová & Michal Pešta, 2022. "Bootstrapping Not Independent and Not Identically Distributed Data," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4671-:d:998884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    2. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    3. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    4. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    5. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    6. Matúš Maciak & Michal Pešta & Barbora Peštová, 2020. "Changepoint in dependent and non-stationary panels," Statistical Papers, Springer, vol. 61(4), pages 1385-1407, August.
    7. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    8. Michal Gerthofer & Michal Pešta, 2017. "Stochastic Claims Reserving in Insurance Using Random Effects," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(5), pages 542-560.
    9. Maciak, Matúš & Mizera, Ivan & Pešta, Michal, 2022. "Functional Profile Techniques For Claims Reserving," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 449-482, May.
    10. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    11. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    2. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    3. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    4. Michal Pešta, 2021. "Changepoint in Error-Prone Relations," Mathematics, MDPI, vol. 9(1), pages 1-25, January.
    5. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    6. Choi, Ji-Eun & Shin, Dong Wan, 2019. "Moving block bootstrapping for a CUSUM test for correlation change," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 95-106.
    7. Barbora Peštová & Michal Pešta, 2018. "Abrupt change in mean using block bootstrap and avoiding variance estimation," Computational Statistics, Springer, vol. 33(1), pages 413-441, March.
    8. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
    9. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    10. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    11. Romano, Joseph P. & Wolf, Michael, 2001. "Improved nonparametric confidence intervals in time series regressions," DES - Working Papers. Statistics and Econometrics. WS ws010201, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Ardia, David & Bluteau, Keven & Tran, Thien Duy, 2022. "How easy is it for investment managers to deploy their talent in green and brown stocks?," Finance Research Letters, Elsevier, vol. 48(C).
    13. Eunju Hwang & Dong Wan Shin, 2017. "Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 767-787, November.
    14. Yeonwoo Rho & Xiaofeng Shao, 2015. "Inference for Time Series Regression Models With Weakly Dependent and Heteroscedastic Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 444-457, July.
    15. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    16. Sevan Gulesserian & Mohitosh Kejriwal, 2014. "On the power of bootstrap tests for stationarity: a Monte Carlo comparison," Empirical Economics, Springer, vol. 46(3), pages 973-998, May.
    17. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    18. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    19. Javier Hidalgo & Marcia M Schafgans, 2017. "Inference Without Smoothing for Large Panels with Cross- Sectional and Temporal Dependence," STICERD - Econometrics Paper Series 597, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. David Ardia & Kris Boudt, 2013. "The Peer Performance of Hedge Funds," Cahiers de recherche 1329, CIRPEE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4671-:d:998884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.