Advanced Search
MyIDEAS: Login

Improved Nonparametric Confidence Intervals In Time Series Regressions

Contents:

Author Info

  • Joseph P. Romano

    ()

  • Michael Wolf

    ()

Abstract

Confidence intervals in time series regressions suffer from notorious coverage problems. This is especially true when the dependence in the data is noticeable and sample sizes are small to moderate, as is often the case in empirical studies. This paper proposes a method that combines prewhitening and the studentized bootstrap. While both prewhitening and the studentized bootstrap each provides improvement over standard normal theory intervals, one can achieve a further improvement by conjoining them in an appropriate way. As a side note, it is stressed that symmetric confidence intervals equal-tailed ones, since they exhibit improved coverage accuracy. We propose concrete ways to deal with the issues of block size, choice of kernel, and choice of bandwidth. The improvements in small sample performance are supported by a simulation study.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws010201.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws010201.

as in new window
Length:
Date of creation: Jan 2001
Date of revision:
Handle: RePEc:cte:wsrepe:ws010201

Contact details of provider:
Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Davidson, Russell & MacKinnon, James G., 1981. "Efficient estimation of tail-area probabilities in sampling experiments," Economics Letters, Elsevier, vol. 8(1), pages 73-77.
  2. repec:att:wimass:9220 is not listed on IDEAS
  3. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  4. Horowitz, Joel L., 2001. "The bootstrap and hypothesis tests in econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 37-40, January.
  5. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  6. Donald W.K. Andrews, 1999. "Higher-Order Improvements of a Computationally Attractive-Step Bootstrap for Extremum Estimators," Cowles Foundation Discussion Papers 1230R, Cowles Foundation for Research in Economics, Yale University, revised Jan 2001.
  7. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  8. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  9. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
  10. Gon alves, S lvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1367-1384, December.
  11. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
  12. Politis, D. N. & Romano, Joseph P. & Wolf, Michael, 1997. "Subsampling for heteroskedastic time series," Journal of Econometrics, Elsevier, vol. 81(2), pages 281-317, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
  2. Joseph P. Romano & Michael Wolf, 2003. "Stepwise multiple testing as formalized data snooping," Economics Working Papers 712, Department of Economics and Business, Universitat Pompeu Fabra.
  3. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 17(3), pages 417-442, November.
  4. Oliver Ledoit & Michael Wolf, 2008. "Robust Performance Hypothesis Testing with the Sharpe Ratio," IEW - Working Papers 320, Institute for Empirical Research in Economics - University of Zurich.
  5. Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
  6. Auer, Benjamin R. & Schuhmacher, Frank, 2013. "Performance hypothesis testing with the Sharpe ratio: The case of hedge funds," Finance Research Letters, Elsevier, vol. 10(4), pages 196-208.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws010201. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.