IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p378-d424797.html
   My bibliography  Save this article

Detection of City Integration Processes in Rapidly Urbanizing Areas Based on Remote Sensing Imagery

Author

Listed:
  • Zihao Zheng

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020 Padova, Italy)

  • Zhifeng Wu

    (School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China
    Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China)

  • Yingbiao Chen

    (School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Zhiwei Yang

    (School of Geographical Sciences and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Francesco Marinello

    (Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020 Padova, Italy)

Abstract

Since China’s reform and development commenced, in the context of rapid urbanization and coordinated regional development, Chinese cities with a close geographic proximity and social ties have gradually formed an integrated city development model. As a new phenomenon in China’s urbanization process, existing research on China’s integrated cities mainly focuses on typical case studies, and most research has been limited to literature reviews and theoretical analyses. The growing application of remote sensing technology in urbanization research in recent years has provided new opportunities for the analysis of city integration. Therefore, based on multi-spectral Landsat-8 and nighttime light images (SNPP/VIIRS, Suomi National Polar-orbiting Platform/Visible Infrared Imaging Radiometer Suite), this paper selects four of the most representative integrated cities with different backgrounds in China to analyze the land-use conversion, plot light fluctuation, and light gravity center shift in the boundary zone between cities. The results show that (1) Guangfo has the highest level of integration and urban expansion is mainly concentrated in the south-central part of the boundary area; (2) Guanshen’s level of integration is second to Guangfo’s and is mainly concentrated in the west; (3) HuSu’s integration is still in the initial stage and its increase in light intensity lags behind the expansion of building land during the study period; (4) although the light intensity and building land area increased significantly during the study period in Xixian, the overall development level of Xixian still lagged behind coastal cities due to the restriction of its geographical location. Our application results expand the data sources for integrated city research and the obtained results can potentially support decision-making and planning in the process of urban development.

Suggested Citation

  • Zihao Zheng & Zhifeng Wu & Yingbiao Chen & Zhiwei Yang & Francesco Marinello, 2020. "Detection of City Integration Processes in Rapidly Urbanizing Areas Based on Remote Sensing Imagery," Land, MDPI, vol. 9(10), pages 1-15, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:378-:d:424797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henderson, J V, 1974. "The Sizes and Types of Cities," American Economic Review, American Economic Association, vol. 64(4), pages 640-656, September.
    2. John E. K. Akubia & Antje Bruns, 2019. "Unravelling the Frontiers of Urban Growth: Spatio-Temporal Dynamics of Land-Use Change and Urban Expansion in Greater Accra Metropolitan Area, Ghana," Land, MDPI, vol. 8(9), pages 1-23, August.
    3. Ram Avtar & Saurabh Tripathi & Ashwani Kumar Aggarwal, 2019. "Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India," Land, MDPI, vol. 8(8), pages 1-19, August.
    4. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    5. Tiangui Lv & Li Wang & Xinmin Zhang & Hualin Xie & Hua Lu & Hongyi Li & Wangda Liu & Yanwei Zhang, 2019. "Coupling Coordinated Development and Exploring Its Influencing Factors in Nanchang, China: From the Perspectives of Land Urbanization and Population Urbanization," Land, MDPI, vol. 8(12), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rizwan Muhammad & Wenyin Zhang & Zaheer Abbas & Feng Guo & Luc Gwiazdzinski, 2022. "Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China," Land, MDPI, vol. 11(3), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosker, Maarten & Brakman, Steven & Garretsen, Harry & Schramm, Marc, 2008. "A century of shocks: The evolution of the German city size distribution 1925-1999," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 330-347, July.
    2. Klein, Alexander & Leunig, Tim, 2013. "Gibrat’s Law and the British Industrial Revolution," CAGE Online Working Paper Series 146, Competitive Advantage in the Global Economy (CAGE).
    3. Acocella Nicola & Di Bartolomeo Giovanni, 2013. "Population location, commuting and local public goods: A political economy approach," wp.comunite 0105, Department of Communication, University of Teramo.
    4. Rui Baptista & Joana Mendonça, 2010. "Proximity to knowledge sources and the location of knowledge-based start-ups," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(1), pages 5-29, August.
    5. Luc Christiaensen & Ravi Kanbur, 2017. "Secondary Towns and Poverty Reduction: Refocusing the Urbanization Agenda," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 405-419, October.
    6. BOURDEAU-LEPAGE, Lise & HURIOT, Jean-Marie, 2006. "Megacities vs. Global Cities. The institutional hypothesis," LEG - Document de travail - Economie 2006-05, LEG, Laboratoire d'Economie et de Gestion, CNRS, Université de Bourgogne.
    7. Fei Tao & Guoan Tang & Yihao Wu & Tong Zhou, 2022. "Spatiotemporal Heterogeneity and Driving Mechanism of Co-Ordinated Urban Development: A Case Study of the Central Area of the Yangtze River Delta, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    8. Takatoshi Tabuchi & Jacques-François Thisse, 2006. "Regional Specialization, Urban Hierarchy, And Commuting Costs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(4), pages 1295-1317, November.
    9. Stephan Heblich & Stephen J Redding & Daniel M Sturm, 2020. "The Making of the Modern Metropolis: Evidence from London," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2059-2133.
    10. Ertan Oktay & Giray Gozgor, 2013. "Trade And Regional Development In A Developing Country: The Case Of Turkey," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 201-212, November.
    11. Stephen J. Redding, 2010. "The Empirics Of New Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 297-311, February.
    12. Carlino, Gerald & Kerr, William R., 2015. "Agglomeration and Innovation," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 349-404, Elsevier.
    13. Donald R. Davis & David E. Weinstein, 2008. "A Search For Multiple Equilibria In Urban Industrial Structure," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 29-65, February.
    14. Ivan Muñiz & Anna Galindo & Miguel Angel García, 2005. "Descentralisation, Integration and polycentrism in Barcelona," Working Papers wpdea0512, Department of Applied Economics at Universitat Autonoma of Barcelona.
    15. Li, Jiewei & Lu, Ming & Lu, Tianyi, 2022. "Constructing compact cities: How urban regeneration can enhance growth and relieve congestion," Economic Modelling, Elsevier, vol. 113(C).
    16. Berliant, Marcus & Reed III, Robert R. & Wang, Ping, 2006. "Knowledge exchange, matching, and agglomeration," Journal of Urban Economics, Elsevier, vol. 60(1), pages 69-95, July.
    17. Larue, Solène & Latruffe, Laure, 2009. "Agglomeration externalities and technical efficiency in French pig production," Working Papers 210403, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    18. Neil Foster & Robert Stehrer, 2009. "Sectoral Productivity, Density and Agglomeration in the Wider Europe," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(4), pages 427-446.
    19. Kauffmann, Albrecht, 2021. "Befindet sich die "Metropolregion Mitteldeutschland" auf dem Weg zur räumlich integrierten Region? Eine empirische Untersuchung der Berufspendlerverflechtungen," Arbeitsberichte der ARL: Aufsätze, in: Rosenfeld, Martin T. W. & Stefansky, Andreas (ed.), "Metropolregion Mitteldeutschland" aus raumwissenschaftlicher Sicht, volume 30, pages 76-95, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft.
    20. Henderson, Vernon, 2000. "How urban concentration affects economic growth," Policy Research Working Paper Series 2326, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:378-:d:424797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.