IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i3p97-d163948.html
   My bibliography  Save this article

Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models

Author

Listed:
  • Ulfia A. Lenfers

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Julius Weyl

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Thomas Clemen

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

Abstract

Due to the fact that the South Africa’s savanna landscapes are under changing conditions, the previously sustainable firewood collection system in rural areas has become a social-ecological factor in questions about landscape management. While the resilience of savannas in national parks such as Kruger National Park (KNP) in South Africa has been widely acknowledged in ecosystem management, the resilience of woody vegetation outside protected areas has been underappreciated. Collecting wood is the dominant source of energy for rural households, and there is an urgent need for land management to find sustainable solutions for this complex social-ecological system. However, the firewood collection scenario is only one example, and stands for all “human-ecosystem service” interactions under the topic of over-utilization, e.g., fishery, grazing, harvesting. Agent-based modeling combined with goal-oriented action planning (GOAP) can provide fresh insights into the relationship between individual needs of humans and changes in land use. At the same time, this modeling approach includes adaptive behavior under changing conditions. A firewood collection scenario was selected for a proof-of-concept comprising households, collectors, ecosystem services and firewood sites. Our results have shown that, even when it is predictable what a single human agent will do, massive up-scaling is needed in order to understand the whole complexity of social-ecological systems. Under changing conditions, such as climate and an increasing population, fair distribution of natural goods become an important issue.

Suggested Citation

  • Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:3:p:97-:d:163948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/3/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/3/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Axelrod, 1997. "Advancing the Art of Simulation in the Social Sciences," Working Papers 97-05-048, Santa Fe Institute.
    2. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    3. Richard Aspinall & Michele Staiano, 2017. "A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System," Land, MDPI, vol. 6(4), pages 1-9, November.
    4. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    5. Démurger, Sylvie & Fournier, Martin, 2011. "Poverty and firewood consumption: A case study of rural households in northern China," China Economic Review, Elsevier, vol. 22(4), pages 512-523.
    6. Joshi, Janak & Bohara, Alok K., 2017. "Household preferences for cooking fuels and inter-fuel substitutions: Unlocking the modern fuels in the Nepalese household," Energy Policy, Elsevier, vol. 107(C), pages 507-523.
    7. Kelley A. Crews & Kenneth R. Young, 2013. "Forefronting the Socio-Ecological in Savanna Landscapes through Their Spatial and Temporal Contingencies," Land, MDPI, vol. 2(3), pages 1-20, September.
    8. Sarah J. Findlay & Wayne C. Twine, 2018. "Chiefs in a Democracy: A Case Study of the ‘New’ Systems of Regulating Firewood Harvesting in Post-Apartheid South Africa," Land, MDPI, vol. 7(1), pages 1-21, March.
    9. Matsika, R. & Erasmus, B.F.N. & Twine, W.C., 2013. "Double jeopardy: The dichotomy of fuelwood use in rural South Africa," Energy Policy, Elsevier, vol. 52(C), pages 716-725.
    10. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    11. Biola K. Badmos & Sampson K. Agodzo & Grace B. Villamor & Samuel N. Odai, 2015. "An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana," Land, MDPI, vol. 4(3), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulfia A. Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Julius Weyl & Thomas Clemen, 2022. "Modeling the Future Tree Distribution in a South African Savanna Ecosystem: An Agent-Based Model Approach," Land, MDPI, vol. 11(5), pages 1-24, April.
    2. Ulfia A. Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Daniel Osterholz & Jonathan Ströbele & Thomas Clemen, 2021. "Improving Model Predictions—Integration of Real-Time Sensor Data into a Running Simulation of an Agent-Based Model," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    3. Wieland, Ralf & Kuhls, Katrin & Lentz, Hartmut H.K. & Conraths, Franz & Kampen, Helge & Werner, Doreen, 2021. "Combined climate and regional mosquito habitat model based on machine learning," Ecological Modelling, Elsevier, vol. 452(C).
    4. Gerrit Günther & Thomas Clemen & Rainer Duttmann & Brigitta Schütt & Daniel Knitter, 2021. "Of Animal Husbandry and Food Production—A First Step towards a Modular Agent-Based Modelling Platform for Socio-Ecological Dynamics," Land, MDPI, vol. 10(12), pages 1-25, December.
    5. Christian Berger & Mari Bieri & Karen Bradshaw & Christian Brümmer & Thomas Clemen & Thomas Hickler & Werner Leo Kutsch & Ulfia A. Lenfers & Carola Martens & Guy F. Midgley & Kanisios Mukwashi & Victo, 2019. "Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management," Climatic Change, Springer, vol. 156(1), pages 139-150, September.
    6. Tshidzumba, Ratsodo Phillip & Chirwa, Paxie Wanangwa, 2022. "Forest-based land reform partnerships in rural development and the sustenance of timber markets. Learning from two South African cases," Forest Policy and Economics, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    2. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    3. Li, Feixue & Li, Zhifeng & Chen, Honghua & Chen, Zhenjie & Li, Manchun, 2020. "An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land growth simulation in Shenzhen, China," Land Use Policy, Elsevier, vol. 95(C).
    4. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    5. Bourceret, Amélie & Amblard, Laurence & Mathias, Jean-Denis, 2022. "Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour," Ecological Economics, Elsevier, vol. 194(C).
    6. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    7. Pacilly, Francine C.A. & Hofstede, Gert Jan & Lammerts van Bueren, Edith T. & Kessel, Geert J.T. & Groot, Jeroen C.J., 2018. "Simulating crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in disease control: The case of potato late blight," Ecological Modelling, Elsevier, vol. 378(C), pages 1-12.
    8. Leigh Tesfatsion, 2017. "Elements of Dynamic Economic Modeling: Presentation and Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 192-216, March.
    9. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    10. Tesfatsion, Leigh, 2017. "Modeling Economic Systems as Locally-Constructive Sequential Games," ISU General Staff Papers 201704300700001022, Iowa State University, Department of Economics.
    11. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    12. Vásquez Lavin, Felipe & Barrientos, Manuel & Castillo, Álvaro & Herrera, Iván & Ponce Oliva, Roberto D., 2020. "Firewood certification programs: Key attributes and policy implications," Energy Policy, Elsevier, vol. 137(C).
    13. Jonas Friege & Georg Holtz & Emile Chappin, 2016. "Exploring Homeowners’ Insulation Activity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-4.
    14. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    15. Leigh Tesfatsion, 2017. "Modeling economic systems as locally-constructive sequential games," Journal of Economic Methodology, Taylor & Francis Journals, vol. 24(4), pages 384-409, October.
    16. Sina Hocke & Matthias Meyer & Iris Lorscheid, 2015. "Improving simulation model analysis and communication via design of experiment principles: an example from the simulation-based design of cost accounting systems," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 26(2), pages 131-155, August.
    17. Egger, Claudine & Plutzar, Christoph & Mayer, Andreas & Dullinger, Iwona & Dullinger, Stefan & Essl, Franz & Gattringer, Andreas & Bohner, Andreas & Haberl, Helmut & Gaube, Veronika, 2022. "Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria)," Ecological Economics, Elsevier, vol. 201(C).
    18. F. LeRon Shults & Wesley J. Wildman, 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    19. Tesfatsion, Leigh, 2017. "Modeling Economic Systems as Locally-Constructive Sequential Games," ISU General Staff Papers 201703280700001022, Iowa State University, Department of Economics.
    20. Brinkmann, Katja & Kübler, Daniel & Liehr, Stefan & Buerkert, Andreas, 2021. "Agent-based modelling of the social-ecological nature of poverty traps in southwestern Madagascar," Agricultural Systems, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:3:p:97-:d:163948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.