IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1080-d862831.html
   My bibliography  Save this article

Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi

Author

Listed:
  • Zhiyuan Zhu

    (College of Agronomy, Northwest A & F University, Xianyang 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Xianyang 712100, China)

  • Zhikun Mei

    (College of Agronomy, Northwest A & F University, Xianyang 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Xianyang 712100, China)

  • Shilin Li

    (College of Agronomy, Northwest A & F University, Xianyang 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Xianyang 712100, China)

  • Guangxin Ren

    (College of Agronomy, Northwest A & F University, Xianyang 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Xianyang 712100, China)

  • Yongzhong Feng

    (College of Agronomy, Northwest A & F University, Xianyang 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Xianyang 712100, China)

Abstract

Ecological carrying capacity (ECC), which requires simple scientific evaluation methods, is an important evaluation index for assessing the sustainability of ecosystems. We integrate an innovative research method. Geographic information systems (GIS) and remote sensing (RS) were used to evaluate the ECC of the Yellow River Basin in Shaanxi (YRBS) and to identify the underlying factors that influence it. A calculation method that combines RS and GIS data to estimate ECC based on net primary productivity (NPP) was established. The Carnegie–Ames–Stanford approach model was applied to estimate NPP. The NPP of each land type was used as an indicator to determine the yield factors. The ECC of the watershed was calculated with the carrying capacities of each land-use type. The geographical detector model was used to study the influencing factors of ECC, which provides a scientific basis for the formulation of ecological management policies in YRBS. The results show that from 2000 to 2010, it first decreased by 45.46%, and then increased by 37.06% in 2020, an overall decrease of 13.49 × 10 5 wha in 20 years. Precipitation is the dominant factor that affects ECC, while the impact of human activities on ECC was significantly enhanced during the study period. The developed method based on RS data serves as a reference for ecological evaluation in other similar regions.

Suggested Citation

  • Zhiyuan Zhu & Zhikun Mei & Shilin Li & Guangxin Ren & Yongzhong Feng, 2022. "Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi," Land, MDPI, vol. 11(7), pages 1-17, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1080-:d:862831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhuo & Yen-Ku, Kuo & Li, Zeyun & An, Nguyen Binh & Abdul-Samad, Zulkiflee, 2022. "The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators," Renewable Energy, Elsevier, vol. 188(C), pages 70-80.
    2. He, Yafen & Xie, Hualin, 2019. "Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS: A case study of Nanchang City," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Kaiyuan Li & Xiaolong Jin & Danxun Ma & Penghui Jiang, 2019. "Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urbanization Areas—A Case Study of Xinbei District, Changzhou," Land, MDPI, vol. 8(4), pages 1-17, April.
    4. Wei-Ling Hsu & Xijuan Shen & Haiying Xu & Chunmei Zhang & Hsin-Lung Liu & Yan-Chyuan Shiau, 2021. "Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China," Land, MDPI, vol. 10(11), pages 1-21, October.
    5. Xueqi Wang & Shuo Wang & Gengyuan Liu & Ningyu Yan & Qing Yang & Bin Chen & Junhong Bai & Yan Zhang & Ginevra Virginia Lombardi, 2022. "Identification of Priority Areas for Improving Urban Ecological Carrying Capacity: Based on Supply–Demand Matching of Ecosystem Services," Land, MDPI, vol. 11(5), pages 1-24, May.
    6. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    7. Wackernagel, Mathis & Onisto, Larry & Bello, Patricia & Callejas Linares, Alejandro & Susana Lopez Falfan, Ina & Mendez Garcia, Jesus & Isabel Suarez Guerrero, Ana & Guadalupe Suarez Guerrero, Ma., 1999. "National natural capital accounting with the ecological footprint concept," Ecological Economics, Elsevier, vol. 29(3), pages 375-390, June.
    8. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    9. Chuxiong Deng & Zhen Liu & Rongrong Li & Ke Li, 2018. "Sustainability Evaluation Based on a Three-Dimensional Ecological Footprint Model: A Case Study in Hunan, China," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    10. Xu, Xin & Zhang, Daojun & Zhang, Yu & Yao, Shunbo & Zhang, Jinting, 2020. "Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China," Land Use Policy, Elsevier, vol. 90(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenggen Fan & Ji Liu & Hu Yu & Hua Lu & Puwei Zhang, 2022. "Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China," Land, MDPI, vol. 11(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    2. Shuhui Zhang & Fuquan Li & Yuke Zhou & Ziyuan Hu & Ruixin Zhang & Xiaoyu Xiang & Yali Zhang, 2022. "Using Net Primary Productivity to Characterize the Spatio-Temporal Dynamics of Ecological Footprint for a Resource-Based City, Panzhihua in China," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Zhenggen Fan & Ji Liu & Hu Yu & Hua Lu & Puwei Zhang, 2022. "Spatial-Temporal Pattern and Influencing Factors of Land Ecological Carrying Capacity in The National Pilot Zones for Ecological Conservation in China," Land, MDPI, vol. 11(12), pages 1-17, December.
    4. Yao Lu & Xiaoshun Li & Heng Ni & Xin Chen & Chuyu Xia & Dongmei Jiang & Huiping Fan, 2019. "Temporal-Spatial Evolution of the Urban Ecological Footprint Based on Net Primary Productivity: A Case Study of Xuzhou Central Area, China," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    5. Zhigang Li & Jie Yang & Jialong Zhong & Dong Zhang, 2022. "Assessment of Urban Agglomeration Ecological Sustainability and Identification of Influencing Factors: Based on the 3DEF Model and the Random Forest," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    6. Lu Wang & Bonoua Faye & Quanfeng Li & Yunkai Li, 2023. "A Spatio-Temporal Analysis of the Ecological Compensation for Cultivated Land in Northeast China," Land, MDPI, vol. 12(12), pages 1-20, December.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    9. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    10. Benjamin Leard, 2011. "Joan Martinez-Alier and Ingo Ropke (eds.): Recent developments in ecological economics (2 vols.)," Journal of Bioeconomics, Springer, vol. 13(2), pages 161-178, July.
    11. Maria Serena Mancini & Mikel Evans & Katsunori Iha & Carla Danelutti & Alessandro Galli, 2018. "Assessing the Ecological Footprint of Ecotourism Packages: A Methodological Proposition," Resources, MDPI, vol. 7(2), pages 1-37, June.
    12. Shan Chen & Yuanmin Sun & Kunxian Tang & Fei Zhang & Weilun Ding & Ao Wang, 2022. "Distribution Characteristics and Restoration Application of Vegetation in Chengcun Bay Surrounding Areas of Yangjiang City," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    13. Ella Furness & Harry Nelson, 2016. "Are human values and community participation key to climate adaptation? The case of community forest organisations in British Columbia," Climatic Change, Springer, vol. 135(2), pages 243-259, March.
    14. Małgorzata Stachowiak & Jerzy Śleszyński, 2002. "How Big Is Ecological Footprint of the Polish Economy?," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 8.
    15. Kolcava, Dennis & Nguyen, Quynh & Bernauer, Thomas, 2019. "Does trade liberalization lead to environmental burden shifting in the global economy?," Ecological Economics, Elsevier, vol. 163(C), pages 98-112.
    16. Denisa Szabo & Mihai Dragomir & Mihail Țîțu & Diana Dragomir & Sorin Popescu & Silvia Tofană, 2023. "Sustainable Low-Carbon Production: From Strategy to Reality," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    17. Hao Chen & Luuk Fleskens & Simon W. Moolenaar & Coen J. Ritsema & Fei Wang, 2022. "Stakeholders’ Perceptions towards Land Restoration and Its Impacts on Ecosystem Services: A Case Study in the Chinese Loess Plateau," Land, MDPI, vol. 11(11), pages 1-18, November.
    18. Jia, Junsong & Deng, Hongbing & Duan, Jing & Zhao, Jingzhu, 2009. "Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method--A case study in Henan Province, China," Ecological Economics, Elsevier, vol. 68(11), pages 2818-2824, September.
    19. Herendeen, Robert A. & Wildermuth, Todd, 2002. "Resource-based sustainability indicators: Chase County, Kansas, as example," Ecological Economics, Elsevier, vol. 42(1-2), pages 243-257, August.
    20. Fuyuan Wang & Kaiyong Wang, 2017. "Assessing the Effect of Eco-City Practices on Urban Sustainability Using an Extended Ecological Footprint Model: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 9(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1080-:d:862831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.