IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p698-d810505.html
   My bibliography  Save this article

Identification of Priority Areas for Improving Urban Ecological Carrying Capacity: Based on Supply–Demand Matching of Ecosystem Services

Author

Listed:
  • Xueqi Wang

    (CMA Public Meteorological Service Centre, Beijing 100081, China
    CMA Wind and Solar Energy Centre, Beijing 100081, China
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Shuo Wang

    (Development Research Center of Surveying and Mapping, Ministry of Natural Resources of the People’s Republic of China, Beijing 100830, China)

  • Gengyuan Liu

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Ningyu Yan

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Qing Yang

    (Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China)

  • Bin Chen

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Junhong Bai

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Yan Zhang

    (State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
    Beijing Engineering Research Center for Watershed Environmental Restoration & Integrated Ecological Regulation, Beijing 100875, China)

  • Ginevra Virginia Lombardi

    (Department of Economics and Management, University of Florence Via delle Pandette 9, 50121 Florence, Italy)

Abstract

As the most concentrated area of human activities, cities consume many natural resources and discharge a large amount of waste into the natural environment, which has a huge environmental impact. Most of the ecological and environmental problems, such as environmental pollution, global climate change, and loss of biodiversity, are related to urban systems. How to coordinate urban development with the urban ecological carrying capacity is related to the destiny of the city itself, and also to whether its surrounding areas can successfully achieve the goal of high environmental quality and sustainable development. At present, the theory and methods of urban ecological carrying capacity research are relatively new, which has caused problems for policy makers in practical applications. This paper proposes a theoretical framework for urban ecological carrying capacity assessment based on the analysis of ecosystem services supply and demand. Combined with multi-source spatial data and spatial model methods, the supply and demand of ecosystem services were spatially quantified. The capital city of China, Beijing, was the case study area for this research. The spatial differentiation of the supply–demand relationship of ecosystem services is formed. The priority areas for ecological carrying capacity improvement at pixel scale and at the administrative level are obtained, respectively. The results show that the first priority area is concentrated in the center of the urban area, accounting for 31.11% of the total area of Beijing. According to the secondary zone and the specific ecosystem service type, the ecological carrying capacity improvement strategy of different zones is proposed. This study provides a new perspective for investigating urban ecological carrying capacity and for identifying the priority areas for ecological carrying capacity improvement, and helps the policy-makers to design tailored policy actions.

Suggested Citation

  • Xueqi Wang & Shuo Wang & Gengyuan Liu & Ningyu Yan & Qing Yang & Bin Chen & Junhong Bai & Yan Zhang & Ginevra Virginia Lombardi, 2022. "Identification of Priority Areas for Improving Urban Ecological Carrying Capacity: Based on Supply–Demand Matching of Ecosystem Services," Land, MDPI, vol. 11(5), pages 1-24, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:698-:d:810505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irmi Seidl & Clem A. Tisdell, 2003. "Carrying capacity reconsidered: from Malthus' population theory to cultural carrying capacity," Chapters, in: Ecological and Environmental Economics, chapter 13, pages 192-206, Edward Elgar Publishing.
    2. Larondelle, Neele & Lauf, Steffen, 2016. "Balancing demand and supply of multiple urban ecosystem services on different spatial scales," Ecosystem Services, Elsevier, vol. 22(PA), pages 18-31.
    3. Jinpei Ou & Xiaoping Liu & Xia Li & Meifang Li & Wenkai Li, 2015. "Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Zhu & Zhikun Mei & Shilin Li & Guangxin Ren & Yongzhong Feng, 2022. "Evaluation of Ecological Carrying Capacity and Identification of Its Influencing Factors Based on Remote Sensing and Geographic Information System: A Case Study of the Yellow River Basin in Shaanxi," Land, MDPI, vol. 11(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    2. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    3. Jay L Newberry & Zizwe Grandison, 2017. "Streamlining Sustainability: A Principal Component Reduction for Regionally Based African-Centric Indicators," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 1(5), pages 130-141, February.
    4. Li YU & Yanyu LU & Wei HUANG & Yuqing XU, 2016. "The Significance and General Approaches of Climatic Carrying Capacity Assessment," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-14, March.
    5. Vail, David & Heldt, Tobias, 2004. "Governing snowmobilers in multiple-use landscapes: Swedish and Maine (USA) cases," Ecological Economics, Elsevier, vol. 48(4), pages 469-483, April.
    6. Yue Zheng & Jinpei Ou & Guangzhao Chen & Xinxin Wu & Xiaoping Liu, 2022. "Mapping Building-Based Spatiotemporal Distributions of Carbon Dioxide Emission: A Case Study in England," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    7. Jinbi Yang & Hao Ding, 2018. "A Quantitative Assessment of Sustainable Development Based on Relative Resource Carrying Capacity in Jiangsu Province of China," IJERPH, MDPI, vol. 15(12), pages 1-13, December.
    8. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    9. Luyao Wang & Hong Fan & Yankun Wang, 2018. "Estimation of consumption potentiality using VIIRS night-time light data," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    10. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    11. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    12. Małgorzata Świąder & Szymon Szewrański & Jan K. Kazak, 2018. "Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    13. Hermanns, Till & Helming, Katharina & König, Hannes J. & Schmidt, Katharina & Li, Qirui & Faust, Heiko, 2017. "Sustainability impact assessment of peatland-use scenarios: Confronting land use supply with demand," Ecosystem Services, Elsevier, vol. 26(PB), pages 365-376.
    14. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    15. Shuddhasattwa Rafiq & Ingrid Nielsen & Russell Smyth, 2016. "Effect of Internal Migration on Air and Water Pollution in China," Monash Economics Working Papers 27-16, Monash University, Department of Economics.
    16. Natalia Levashova & Alla Sidorova & Anna Semina & Mingkang Ni, 2019. "A Spatio-Temporal Autowave Model of Shanghai Territory Development," Sustainability, MDPI, vol. 11(13), pages 1-13, July.
    17. Zamru Ajuhari & Azlizam Aziz & Sam Shor Nahar Yaakob & Shamsul Abu Bakar & Manohar Mariapan, 2023. "Systematic Literature Review on Methods of Assessing Carrying Capacity in Recreation and Tourism Destinations," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Yohan Iddawela & Neil Lee & Andrés Rodríguez-Pose, 2021. "Quality of Sub-national Government and Regional Development in Africa," Journal of Development Studies, Taylor & Francis Journals, vol. 57(8), pages 1282-1302, August.
    19. Tianlin Zhai & Jing Wang & Ying Fang & Longyang Huang & Jingjing Liu & Chenchen Zhao, 2021. "Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    20. Jesús Crespo Cuaresma & Olha Danylo & Steffen Fritz & Martin Hofer & Homi Kharas & Juan Carlos Laso Bayas, 2020. "What do we know about poverty in North Korea?," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:698-:d:810505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.