IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v10y2022i2p28-d800312.html
   My bibliography  Save this article

Markowitz Mean-Variance Portfolio Selection and Optimization under a Behavioral Spectacle: New Empirical Evidence

Author

Listed:
  • Jules Clément Mba

    (School of Economics, College of Business and Economics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa)

  • Kofi Agyarko Ababio

    (Department of Statistical Sciences, Kumasi Technical University, P.O. Box 854, Kumasi AK039, Ashanti Region, Ghana)

  • Samuel Kwaku Agyei

    (Department of Finance, School of Business, University of Cape Coast, Sekondi Road, Cape Coast CC145, Ghana)

Abstract

This paper investigates the robustness of the conventional mean-variance (MV) optimization model by making two adjustments within the MV formulation. First, the portfolio selection based on a behavioral decision-making theory that encapsulates the MV statistics and investors psychology. The second aspect involves capturing the portfolio asset dependence structure through copula. Using the behavioral MV (BMV) and the copula behavioral MV (CBMV), the results show that stocks with lower behavioral scores outperform counterpart portfolios with higher behavioral scores. On the other hand, in the Forex market, the reverse is observed for the BMV approach, while the CBMV remains consistent.

Suggested Citation

  • Jules Clément Mba & Kofi Agyarko Ababio & Samuel Kwaku Agyei, 2022. "Markowitz Mean-Variance Portfolio Selection and Optimization under a Behavioral Spectacle: New Empirical Evidence," IJFS, MDPI, vol. 10(2), pages 1-16, April.
  • Handle: RePEc:gam:jijfss:v:10:y:2022:i:2:p:28-:d:800312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/10/2/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/10/2/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thiemo Krink & Sandra Paterlini, 2008. "Differential Evolution for Multiobjective Portfolio Optimization," Center for Economic Research (RECent) 021, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Antonios Antoniou & Nuray Ergul & Phil Holmes, 1997. "Market Efficiency, Thin Trading and Non‐linear Behaviour: Evidence from an Emerging Market," European Financial Management, European Financial Management Association, vol. 3(2), pages 175-190, July.
    4. Zuo Quan Xu & Xun Yu Zhou & Sheng Chao Zhuang, 2019. "Optimal insurance under rank‐dependent utility and incentive compatibility," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 659-692, April.
    5. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    6. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    9. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    10. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    2. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    3. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    4. Yun Shi & Xiangyu Cui & Jing Yao & Duan Li, 2015. "Dynamic Trading with Reference Point Adaptation and Loss Aversion," Operations Research, INFORMS, vol. 63(4), pages 789-806, August.
    5. Qizhu Liang & Jie Xiong, 2017. "Stochastic maximum principle under probability distortion," Papers 1710.11432, arXiv.org, revised Aug 2018.
    6. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    7. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    8. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    9. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    10. Li, Yan & Mi, Hui, 2021. "Portfolio optimization under safety first expected utility with nonlinear probability distortion," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Liurui Deng & Traian A. Pirvu, 2016. "Multi-period investment strategies under Cumulative Prospect Theory," Papers 1608.08490, arXiv.org, revised Mar 2019.
    12. Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
    13. Lou, Youcheng & Strub, Moris S. & Li, Duan & Wang, Shouyang, 2021. "The impact of a reference point determined by social comparison on wealth growth and inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    14. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    15. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    16. Zhao, Jingdong & Zhu, Hongliang & Li, Xindan, 2018. "Optimal execution with price impact under Cumulative Prospect Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1228-1237.
    17. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    18. Huy N. Chau & Mikl'os R'asonyi, 2016. "Skorohod's representation theorem and optimal strategies for markets with frictions," Papers 1606.07311, arXiv.org, revised Apr 2017.
    19. Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 2972, Victoria University of Wellington, School of Economics and Finance.
    20. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:10:y:2022:i:2:p:28-:d:800312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.