IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i7p5405-d1116566.html
   My bibliography  Save this article

Variability of Micro- and Macro-Elements in Anaerobic Co-Digestion of Municipal Sewage Sludge and Food Industrial By-Products

Author

Listed:
  • Aleksandra Szaja

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Agnieszka Montusiewicz

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

  • Magdalena Lebiocka

    (Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland)

Abstract

The main aim of this study was to evaluate the effect of the addition of selected industrial food wastes on the fate of micro- and macro-elements within an anaerobic digestion process (AD), as well as define the relationship between their content and AD efficiency. Orange peels, (OP), orange pulp (PL) and brewery spent grain (BSG) were used as co-substrates, while municipal sewage sludge (SS) was applied as the main component. The introduction of co-substrates resulted in improvements in feedstock composition in terms of macro-elements, with a simultaneous decrease in the content of HMs (heavy metals). Such beneficial effects led to enhanced methane production, and improved process performance at the highest doses of PL and BSG. In turn, reduced biogas and methane production was found in the three-component digestion mixtures in the presence of OP and BSG; therein, the highest accumulation of most HMs within the process was also revealed. Considering the agricultural application of all digestates, exceedances for Cu, Zn and Hg were recorded, thereby excluding their further use for that purpose.

Suggested Citation

  • Aleksandra Szaja & Agnieszka Montusiewicz & Magdalena Lebiocka, 2023. "Variability of Micro- and Macro-Elements in Anaerobic Co-Digestion of Municipal Sewage Sludge and Food Industrial By-Products," IJERPH, MDPI, vol. 20(7), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5405-:d:1116566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/7/5405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/7/5405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    2. Aleksandra Szaja & Agnieszka Montusiewicz & Sylwia Pasieczna-Patkowska & Magdalena Lebiocka, 2022. "Technological and Energetic Aspects of Multi-Component Co-Digestion of the Beverage Industry Wastes and Municipal Sewage Sludge," Energies, MDPI, vol. 15(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    2. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    6. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    7. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Manthos, Georgios & Dareioti, Margarita & Zagklis, Dimitris & Kornaros, Michael, 2023. "Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy," Renewable Energy, Elsevier, vol. 211(C), pages 296-306.
    9. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    10. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    11. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    12. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    13. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    14. Sangmin Kim & Seung-Gyun Woo & Joonyeob Lee & Dae-Hee Lee & Seokhwan Hwang, 2019. "Evaluation of Feasibility of Using the Bacteriophage T4 Lysozyme to Improve the Hydrolysis and Biochemical Methane Potential of Secondary Sludge," Energies, MDPI, vol. 12(19), pages 1-14, September.
    15. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Kehinde O. Olatunji & Daniel M. Madyira & Noor A. Ahmed & Oyetola Ogunkunle, 2022. "Effect of Combined Particle Size Reduction and Fe 3 O 4 Additives on Biogas and Methane Yields of Arachis hypogea Shells at Mesophilic Temperature," Energies, MDPI, vol. 15(11), pages 1-15, May.
    18. Ismail, Amr & Kakar, Farokh laqa & Elbeshbishy, Elsayed & Nakhla, George, 2022. "Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste," Renewable Energy, Elsevier, vol. 195(C), pages 528-539.
    19. Young-Ju Song & Kyung-Su Oh & Beom Lee & Dae-Won Pak & Ji-Hwan Cha & Jun-Gyu Park, 2021. "Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-Digestion Reactor," Energies, MDPI, vol. 14(20), pages 1-16, October.
    20. Ashma Subedi & Bivek Baral, 2021. "Evaluation of Various Biomass Feedstocks for Biogas Generation at Psychrophilic and Mesophilic Temperatures at Higher Altitudes of Nepal," Journal of Development Innovations, KarmaQuest International, vol. 5(1), pages 46-62, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:7:p:5405-:d:1116566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.