IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2397-d1050579.html
   My bibliography  Save this article

Analysis of the Spatial Differentiation and Promotion Potential for Agricultural Eco-Efficiency—Evidence of Pollution’s Strong Disposability

Author

Listed:
  • Dongmei Shi

    (College of Economics, Hebei GEO University, Shijiazhuang 050030, China)

  • Lili Ren

    (Business School, Hebei Normal University, Shijiazhuang 050024, China)

  • Hongyu Li

    (The Graduate School, Woosuk University, Wanju-gun 55338, Republic of Korea)

  • Haizhen Zhang

    (College of Economics, Hebei GEO University, Shijiazhuang 050030, China)

  • Rufei Zhang

    (College of Economics, Hebei GEO University, Shijiazhuang 050030, China)

Abstract

Agricultural eco-efficiency is an important indicator used to measure agriculture’s high-quality and sustainable development. Therefore, this paper uses the EBM-Super-ML method with strong disposability of undesired output to calculate Chinese agricultural eco-efficiency and uses a geographical detector to measure the driving force of the factor. The research conclusions are mainly reflected in three aspects. Firstly, from the perspective of eco-efficiency changes, the overall mean value of agricultural eco-efficiency increased by 3.5%, and the regional heterogeneity is significant, with the fastest growth in the eastern region. Secondly, the results of driving force analysis show that the main driving factors of agricultural eco-efficiency divergence are capital inputs, total carbon emissions, labor inputs, agricultural film residues, fertilizer use, and pesticide residues, with driving forces of 0.43, 0.37, 0.34, 0.31, 0.28, and 0.20, respectively. Finally, from the perspective of eco-efficiency improvement potential, the mean value of output improvement potential is 5%, and the input factor is 7%. Among the non-desired outputs, the reduction rate of agricultural films can reach 40%. Among the input factors, labor input has the highest potential for intensive use, while agricultural machinery has a negative effect. Therefore, strengthening the development of the agricultural service industry is of great significance to improve the utilization rate of mechanical equipment and reduce the undesired output of agriculture.

Suggested Citation

  • Dongmei Shi & Lili Ren & Hongyu Li & Haizhen Zhang & Rufei Zhang, 2023. "Analysis of the Spatial Differentiation and Promotion Potential for Agricultural Eco-Efficiency—Evidence of Pollution’s Strong Disposability," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2397-:d:1050579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaofu Chen & Chang Liu & Xiaohua Yu, 2022. "Urbanization, Economic Development, and Ecological Environment: Evidence from Provincial Panel Data in China," Sustainability, MDPI, vol. 14(3), pages 1-15, January.
    2. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    3. Weizhen Ren & Zilong Zhang & Yueju Wang & Bing Xue & Xingpeng Chen, 2020. "Measuring Regional Eco-Efficiency in China (2003–2016): A “Full World” Perspective and Network Data Envelopment Analysis," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    4. Anbes Tenaye, 2020. "Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia," Economies, MDPI, vol. 8(2), pages 1-27, April.
    5. Roberta Souza Piao & Vivian Lara Silva & Irene Navarro del Aguila & Jerónimo de Burgos Jiménez, 2021. "Green Growth and Agriculture in Brazil," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    6. Haoran Yang & Qun Wu, 2019. "Land Use Eco-Efficiency and Its Convergence Characteristics Under the Constraint of Carbon Emissions in China," IJERPH, MDPI, vol. 16(17), pages 1-17, August.
    7. Xin Long Xu & Jianping Li & Dengsheng Wu & Xi Zhang, 2021. "The intellectual capital efficiency and corporate sustainable growth nexus: comparison from agriculture, tourism and renewable energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16038-16056, November.
    8. Gathala, Mahesh K. & Laing, Alison M. & Tiwari, T.P. & Timsina, J. & Islam, Md. S. & Chowdhury, A.K. & Chattopadhyay, C. & Singh, A.K. & Bhatt, B.P. & Shrestha, R. & Barma, N.C.D. & Rana, D.S. & Jacks, 2020. "Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Yayuan Pang & Xinjun Wang, 2020. "Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    10. Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    11. Svetlana Demidova & Michael Balog & Tatiana Chircova & Anastasia Kulachinskaya & Svetlana Zueva & Irina Akhmetova & Svetlana Ilyashenko, 2021. "Development of Methodology and Assessment of Ecological Safety of the EAEU and CIS Regions in the Context of Sustainable Development," Economies, MDPI, vol. 9(3), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    2. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    3. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    4. Dutta, S.K. & Laing, Alison & Kumar, Sanjay & Shambhavi, Shweta & Kumar, Sunil & Kumar, Birender & Verma, D.K. & Kumar, Arun & Singh, Ravi Gopal & Gathala, Mahesh, 2023. "Sustainability, productivity, profitability and nutritional diversity of six cropping systems under conservation agriculture: A long term study in eastern India," Agricultural Systems, Elsevier, vol. 207(C).
    5. Muktar Geleto & Mohammed Essa, 2022. "Analysis of Red Pepper Production Risk Adjusted Technical Efficiency: The Case Of Lanfuro District In Siltie Zone, Southern Ethiopia," International Journal of Business and Management, International Institute of Social and Economic Sciences, vol. 10(1), pages 30-58, May.
    6. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    7. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    8. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    9. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    10. Brown, Brendan & Paudel, Gokul P. & Krupnik, Timothy J., 2021. "Visualising adoption processes through a stepwise framework: A case study of mechanisation on the Nepal Terai," Agricultural Systems, Elsevier, vol. 192(C).
    11. Emma Karki & Akriti Sharma & Brendan Brown, 2022. "Farm mechanisation in Nepal's Terai Region: Policy context, drivers and options," Journal of International Development, John Wiley & Sons, Ltd., vol. 34(2), pages 287-305, March.
    12. Yumei Wu & Rong Wang & Fayuan Wang, 2023. "Exploring the Role of Foreign Direct Investment and Environmental Regulation in Regional Ecological Efficiency in the Context of Sustainable Development," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    13. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    14. Yin Ma & Minrui Zheng & Xinqi Zheng & Yi Huang & Feng Xu & Xiaoli Wang & Jiantao Liu & Yongqiang Lv & Wenchao Liu, 2023. "Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review," Land, MDPI, vol. 12(4), pages 1-21, April.
    15. Guoqing Cui & Wenlong Zheng & Siliang Chen & Yue Dong & Tingyu Huang, 2022. "Study on the Spatial Pattern Characteristics and Influencing Factors of Inefficient Urban Land Use in the Yellow River Basin," Land, MDPI, vol. 11(9), pages 1-24, September.
    16. Xiyuan Yu & Wenli Liu & Lingli Qing & Di Zhang, 2023. "Improving Farm Cooperatives’ Performance and Sustainability: A Study of Agricultural Managers’ Competencies Based on the Grounded Theory and the fsQCA Methods," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    17. Tang, Kai & Li, Zhenshan & He, Chun, 2023. "Spatial distribution pattern and influencing factors of relative poverty in rural China," Innovation and Green Development, Elsevier, vol. 2(1).
    18. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    19. Yuxuan Xu & Jie Lyu & Ying Xue & Hongbin Liu, 2022. "Intentions of Farmers to Renew Productive Agricultural Service Contracts Using the Theory of Planned Behavior: An Empirical Study in Northeastern China," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    20. Nattapong Puttanapong & Amornrat Luenam & Pit Jongwattanakul, 2022. "Spatial Analysis of Inequality in Thailand: Applications of Satellite Data and Spatial Statistics/Econometrics," Sustainability, MDPI, vol. 14(7), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2397-:d:1050579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.