IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10770-d901130.html
   My bibliography  Save this article

Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China

Author

Listed:
  • Hui Guo

    (Shihezi University, Shihezi 832000, China)

  • Feng Zhou

    (Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637009, China)

  • Yawen Zhang

    (Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637009, China)

  • Zhen’an Yang

    (College of Science, Shihezi University, Shihezi 832000, China)

Abstract

Economic development is responsible for excessive sulfur dioxide (SO 2 ) emissions, environmental pressure increases, and human and environmental risks. This study used spatial autocorrelation, the Environmental Kuznets Curve (EKC), and the Logarithmic Mean Divisia Index model to study the spatiotemporal variation characteristics and influencing factors of SO 2 emissions in the Yangtze River Economic Belt (YREB) from 1997 to 2017. Our results show that the total SO 2 emissions in the YREB rose from 513.14 × 10 4 t to 974.00 × 10 4 t before dropping to 321.97 × 10 4 t. The SO 2 emissions from 11 provinces first increased and then decreased, each with different turning points. For example, the emission trends changed in Yunnan in 2011 and in Anhui in 2015, while the other nine provinces saw their emission trends change during 2005–2006. Furthermore, the SO 2 emissions in the YREB showed a significant agglomeration phenomenon, with a Moran index of approximately 0.233–0.987. Moreover, the EKC of SO 2 emissions and per capita GDP in the YREB was N-shaped. The EKCs of eight of the 11 provinces were N-shaped (Shanghai, Zhejiang, Anhui, Jiangxi, Sichuan, Guizhou, Hunan, and Chongqing) and those of the other three were inverted U-shaped (Jiangsu, Yunnan, and Hubei). Thus, economic development can both promote and inhibit the emission of SO 2 . Finally, during the study period, the technical effect (approximately −1387.97 × 10 4 –130.24 × 10 4 t) contributed the most, followed by the economic (approximately 27.81 × 10 4 –1255.59 × 10 4 t), structural (approximately −56.45 × 10 4 –343.90 × 10 4 t), and population effects (approximately 4.25 × 10 4 –39.70 × 10 4 t). Technology was the dominant factor in SO 2 emissions reduction, while economic growth played a major role in promoting SO 2 emissions. Therefore, to promote SO 2 emission reduction, technological innovations and advances should be the primary point of focus.

Suggested Citation

  • Hui Guo & Feng Zhou & Yawen Zhang & Zhen’an Yang, 2022. "Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10770-:d:901130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moutinho, Victor & Varum, Celeste & Madaleno, Mara, 2017. "How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors," Energy Policy, Elsevier, vol. 106(C), pages 326-344.
    2. Hu, Bin & Li, Zhengtao & Zhang, Lin, 2019. "Long-run dynamics of sulphur dioxide emissions, economic growth and energy efficiency in China," MPRA Paper 94588, University Library of Munich, Germany.
    3. Jiang, Qingquan & Khattak, Shoukat Iqbal & Rahman, Zia Ur, 2021. "Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment," Energy, Elsevier, vol. 229(C).
    4. Zhimin Zhou & Xinyue Ye & Xiangyu Ge, 2017. "The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China: A Spatial Panel Data Approach," Sustainability, MDPI, vol. 9(4), pages 1-27, April.
    5. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    6. Yang, Xue & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Zou, Yafeng, 2016. "Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China," Applied Energy, Elsevier, vol. 184(C), pages 714-726.
    7. Chengyu Han & Zhaolin Gu & Hexiang Yang, 2021. "EKC Test of the Relationship between Nitrogen Dioxide Pollution and Economic Growth—A Spatial Econometric Analysis Based on Chinese City Data," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    8. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    9. Sinha, Avik & Bhattacharya, Joysankar, 2017. "Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities," MPRA Paper 100009, University Library of Munich, Germany.
    10. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Erik Hille & Bernhard Lambernd & Aviral K. Tiwari, 2021. "Any Signs of Green Growth? A Spatial Panel Analysis of Regional Air Pollution in South Korea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 719-760, December.
    12. Yue Wang & Lei Shi & Di Chen & Xue Tan, 2020. "Spatial-Temporal Analysis and Driving Factors Decomposition of (De)Coupling Condition of SO 2 Emissions in China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Li & Hong, Xuefei & Wang, Jun, 2020. "Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach," Energy, Elsevier, vol. 195(C).
    2. Syed Ale Raza Shah & Syed Asif Ali Naqvi & Sofia Anwar & Ashfaq Ahmad Shah & Abdul Majeed Nadeem, 2022. "Socio-economic impact assessment of environmental degradation in Pakistan: fresh evidence from the Markov switching equilibrium correction model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13786-13816, December.
    3. Gopal Gopakumar & Ritika Jaiswal & Mayank Parashar, 2022. "Analysis of the Existence of Environmental Kuznets Curve: Evidence from India," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 177-187.
    4. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    5. Shokoohi, Zeinab & Dehbidi, Navid Kargar & Tarazkar, Mohammad Hassan, 2022. "Energy intensity, economic growth and environmental quality in populous Middle East countries," Energy, Elsevier, vol. 239(PC).
    6. Muhammed Ashiq Villanthenkodath & Mohd Arshad Ansari & Muhammad Shahbaz & Xuan Vinh Vo, 2022. "Do tourism development and structural change promote environmental quality? Evidence from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5163-5194, April.
    7. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    8. Nutnaree Maneejuk & Sutthipat Ratchakom & Paravee Maneejuk & Woraphon Yamaka, 2020. "Does the Environmental Kuznets Curve Exist? An International Study," Sustainability, MDPI, vol. 12(21), pages 1-22, November.
    9. Letisha S. Fong & Alberto Salvo & David Taylor, 2020. "Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1441-1456, September.
    10. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO 2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    11. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    12. Sinha, Avik & Sengupta, Tuhin, 2019. "Impact of Energy Mix on Nitrous Oxide Emissions: An Environmental Kuznets Curve approach for APEC countries," MPRA Paper 100091, University Library of Munich, Germany.
    13. Junguo Shi & Hubert Visas & Jabbar Ul-Haq & Shujaat Abbas & Sana Khanum, 2023. "Investigating the impact of export product diversification on environmental degradation: evidence from Chinese Provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11455-11486, October.
    14. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    15. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    16. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Dalia Juočiūnienė & Yuriy Bilan, 2022. "An Empirical Investigation into Greenhouse Gas Emissions and Agricultural Economic Performance in Baltic Countries: A Non-Linear Framework," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    17. Sinha, Avik, 2018. "Impact of ICT exports and internet usage on carbon emissions: A case of OECD countries," MPRA Paper 100360, University Library of Munich, Germany, revised 2018.
    18. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    19. Li, Guo & Zakari, Abdulrasheed & Tawiah, Vincent, 2020. "Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives," Resources Policy, Elsevier, vol. 68(C).
    20. Alan Barrell & Pawel Dobrzanski & Sebastian Bobowski & Krzysztof Siuda & Szymon Chmielowiec, 2021. "Efficiency of Environmental Protection Expenditures in EU Countries," Energies, MDPI, vol. 14(24), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10770-:d:901130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.