IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10162-d889794.html
   My bibliography  Save this article

Associating Renewable Energy, Globalization, Agriculture, and Ecological Footprints: Implications for Sustainable Environment in South Asian Countries

Author

Listed:
  • Lixun Wang

    (Terms in Financial Engineering School of Economics and Management, Weifang University of Science and Technology, Weifang 262799, China)

  • Usman Mehmood

    (Department of Political Science, University of Management and Technology, Lahore 54590, Pakistan
    Remote Sensing, GIS and Climatic Research Laboratory (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore 54590, Pakistan)

  • Ephraim Bonah Agyekum

    (Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia)

  • Solomon Eghosa Uhunamure

    (Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa)

  • Karabo Shale

    (Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa)

Abstract

The main purpose of this work is to investigate the impacts of globalization (GL), renewable energy (RE), and value-added agriculture (AG) on ecological footprints (EF) and CO 2 emissions. For quantitative analysis, this research paper includes yearly data from 1990–2018 for four South Asian nations: Bangladesh, India, Pakistan, and Sri Lanka. These countries are most vulnerable to climate hazards and rapid economic transitions. The Westerlund test provides a strong association among the panel data. The findings of ordinary least squares (DOLS) and fully modified ordinary least squares (FMOLS) show that RE is lowering CO 2 emissions and EF in the long run. A 1% increase in RE results in a 10.55% and 2.08% CO 2 decrease in emissions and EF, respectively. Globalization and AG are contributing to environmental degradation in selected South Asian countries. Therefore, these countries need to exploit solar energy to its full capacity. Moreover, these countries need to explore more RE resources to reduce their dependence on non-RE sources. These countries can make their agricultural sectors sustainable by following efficient farming practices. Environmental awareness should be enhanced among the farmers. Farmers can use animal fertilizers and clean inputs in AG to achieve sustainable agricultural products. Overall, this work suggests that these countries can achieve a cleaner environment by adopting RE and by promoting efficient technologies through globalization.

Suggested Citation

  • Lixun Wang & Usman Mehmood & Ephraim Bonah Agyekum & Solomon Eghosa Uhunamure & Karabo Shale, 2022. "Associating Renewable Energy, Globalization, Agriculture, and Ecological Footprints: Implications for Sustainable Environment in South Asian Countries," IJERPH, MDPI, vol. 19(16), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10162-:d:889794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Tomiwa Sunday Adebayo & Mary Oluwatoyin Agboola & Husam Rjoub & Ibrahim Adeshola & Ephraim Bonah Agyekum & Nallapaneni Manoj Kumar, 2021. "Linking Economic Growth, Urbanization, and Environmental Degradation in China: What Is the Role of Hydroelectricity Consumption?," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
    3. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," Working Papers of the African Governance and Development Institute. 19/040, African Governance and Development Institute..
    4. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    5. Muhammad Shahbaz & Mantu Kumar Mahalik & Syed Jawad Hussain Shahzad & Shawkat Hammoudeh, 2019. "Testing the globalization-driven carbon emissions hypothesis: International evidence," International Economics, CEPII research center, issue 158, pages 25-38.
    6. Axel Dreher, 2006. "Does globalization affect growth? Evidence from a new index of globalization," Applied Economics, Taylor & Francis Journals, vol. 38(10), pages 1091-1110.
    7. Pata, Ugur Korkut, 2018. "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey," Energy, Elsevier, vol. 160(C), pages 1115-1123.
    8. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    9. Abid Rashid Gill & Kuperan K. Viswanathan & Sallahuddin Hassan, 2018. "A test of environmental Kuznets curve (EKC) for carbon emission and potential of renewable energy to reduce green house gases (GHG) in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1103-1114, June.
    10. Samuel A Sarkodie & Evans B Ntiamoah & Dongmei Li, 2019. "Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: The role of renewable and fossil fuel energy consumption," Natural Resources Forum, Blackwell Publishing, vol. 43(3), pages 135-153, August.
    11. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    12. Liu, Xuyi & Zhang, Shun & Bae, Junghan, 2017. "The nexus of renewable energy-agriculture-environment in BRICS," Applied Energy, Elsevier, vol. 204(C), pages 489-496.
    13. Al-mulali, Usama & Solarin, Sakiru Adebola & Sheau-Ting, Low & Ozturk, Ilhan, 2016. "Does moving towards renewable energy causes water and land inefficiency? An empirical investigation," Energy Policy, Elsevier, vol. 93(C), pages 303-314.
    14. Shuddhasattwa Rafiq & Ruhul Salim & Nicholas Apergis, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), pages 348-365, July.
    15. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Ghazala & Sarwar, Suleman & Nawaz, Kishwar & Waheed, Rida & Khan, Mohd Saeed, 2023. "Influence of tech-industry, natural resources, renewable energy and urbanization towards environment footprints: A fresh evidence of Saudi Arabia," Resources Policy, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    2. Yurtkuran, Suleyman, 2021. "The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey: A bootstrap ARDL approach," Renewable Energy, Elsevier, vol. 171(C), pages 1236-1245.
    3. Shah, Muhammad Ibrahim & AbdulKareem, Hauwah K.K. & Zulfiqar khan, & Abbas, Shujaat, 2022. "Examining the agriculture induced Environmental Kuznets Curve hypothesis in BRICS economies: The role of renewable energy as a moderator," Renewable Energy, Elsevier, vol. 198(C), pages 343-351.
    4. Bilal Boubellouta & Sigrid Kusch-Brandt, 2023. "Driving factors of e-waste recycling rate in 30 European countries: new evidence using a panel quantile regression of the EKC hypothesis coupled with the STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7533-7560, August.
    5. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    6. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    7. Myo Myo Htike & Anil Shrestha & Makoto Kakinaka, 2022. "Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12712-12739, November.
    8. Abdelaziz Boukhelkhal, 2022. "Energy use, economic growth and CO2 emissions in Africa: does the environmental Kuznets curve hypothesis exist? New evidence from heterogeneous panel under cross-sectional dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13083-13110, November.
    9. Luzzati, Tommaso & Orsini, Marco & Gucciardi, Gianluca, 2018. "A multiscale reassessment of the Environmental Kuznets Curve for energy and CO2 emissions," Energy Policy, Elsevier, vol. 122(C), pages 612-621.
    10. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2021. "The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU," Renewable Energy, Elsevier, vol. 169(C), pages 293-307.
    11. Doğan, Buhari & Ghosh, Sudeshna & Hoang, Dung Phuong & Chu, Lan Khanh, 2022. "Are economic complexity and eco-innovation mutually exclusive to control energy demand and environmental quality in E7 and G7 countries?," Technology in Society, Elsevier, vol. 68(C).
    12. Liu, Xuyi & Zhang, Shun & Bae, Junghan, 2017. "The nexus of renewable energy-agriculture-environment in BRICS," Applied Energy, Elsevier, vol. 204(C), pages 489-496.
    13. Mehmood, Usman, 2021. "Contribution of renewable energy towards environmental quality: The role of education to achieve sustainable development goals in G11 countries," Renewable Energy, Elsevier, vol. 178(C), pages 600-607.
    14. Nutnaree Maneejuk & Sutthipat Ratchakom & Paravee Maneejuk & Woraphon Yamaka, 2020. "Does the Environmental Kuznets Curve Exist? An International Study," Sustainability, MDPI, vol. 12(21), pages 1-22, November.
    15. Muhammad Shahbaz & Avik Sinha & Andreas Kontoleon, 2022. "Decomposing scale and technique effects of economic growth on energy consumption: Fresh evidence from developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1848-1869, April.
    16. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    17. Balsalobre-Lorente, Daniel & Driha, Oana M. & Shahbaz, Muhammad & Sinha, Avik, 2020. "The effects of tourism and globalization over environmental degradation in developed countries," MPRA Paper 100092, University Library of Munich, Germany.
    18. Jiang-Long Liu & Chao-Qun Ma & Yi-Shuai Ren & Xin-Wei Zhao, 2020. "Do Real Output and Renewable Energy Consumption Affect CO 2 Emissions? Evidence for Selected BRICS Countries," Energies, MDPI, vol. 13(4), pages 1-18, February.
    19. Li, Rongrong & Wang, Qiang & Li, Lejia & Hu, Sailan, 2023. "Do natural resource rent and corruption governance reshape the environmental Kuznets curve for ecological footprint? Evidence from 158 countries," Resources Policy, Elsevier, vol. 85(PB).
    20. Li, Jinying & Li, Sisi, 2020. "Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model," Energy Policy, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10162-:d:889794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.