IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10022-d887930.html
   My bibliography  Save this article

Study on the Spatial Interaction between Urban Economic and Ecological Environment—A Case Study of Wuhan City

Author

Listed:
  • Liang Geng

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Xinyue Zhao

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Yu An

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Lingtong Peng

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Dan Ye

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

Abstract

In order to study the interactive relationship between urban economic and ecological environment, taking Wuhan as an example, Landsat and MODIS remote sensing satellite data and social and economic data were fused with multisource data, and multidimensional indicators were selected to construct the comprehensive evaluation index system of urban economic and ecological environment. The weights were determined by combining subjective and objective methods. Then, the decoupling elasticity coefficient method and spatial autocorrelation model were used to evaluate the dynamic relationship and spatial relationship between economic development and ecological environment in Wuhan from 2014 to 2020. The results showed that there was an interaction between the urban economic and the ecological environment in Wuhan. The ecological level index had a spatial effect, the adjustment of industrial structure had a positive effect on the improvement of the ecological level, and the improvement of the ecological level was also helpful to promote economic development. The typical districts of Huangpi District, Xinzhou District, Jiangxia District, Hannan District, Caidian District, and Hongshan District had superior location and ecological advantages, as well as high development potential. Lastly, on the basis of the empirical analysis results, policy suggestions are made from four aspects: regional differentiated construction, green development, energy consumption, and wetland construction.

Suggested Citation

  • Liang Geng & Xinyue Zhao & Yu An & Lingtong Peng & Dan Ye, 2022. "Study on the Spatial Interaction between Urban Economic and Ecological Environment—A Case Study of Wuhan City," IJERPH, MDPI, vol. 19(16), pages 1-17, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10022-:d:887930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiming Liu & Sunhee Suk, 2021. "Coupling and Coordinating Relationship between Tourism Economy and Ecological Environment—A Case Study of Nagasaki Prefecture, Japan," IJERPH, MDPI, vol. 18(23), pages 1-12, December.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Subhasis Das & Biswajeet Pradhan & Pravat Kumar Shit & Abdullah M. Alamri, 2020. "Assessment of Wetland Ecosystem Health Using the Pressure–State–Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India)," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    4. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    5. Yanhong Zhao & Peng Hou & Jinbao Jiang & Jun Zhai & Yan Chen & Yongcai Wang & Junjun Bai & Bing Zhang & Haitao Xu, 2021. "Coordination Study on Ecological and Economic Coupling of the Yellow River Basin," IJERPH, MDPI, vol. 18(20), pages 1-18, October.
    6. Chen, Nengwang & Li, Huancheng & Wang, Lihong, 2009. "A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications," Ecological Economics, Elsevier, vol. 68(11), pages 2768-2776, September.
    7. Kaili Zhang & Tan Liu & Rongrong Feng & Zhicheng Zhang & Kang Liu, 2021. "Coupling Coordination Relationship and Driving Mechanism between Urbanization and Ecosystem Service Value in Large Regions: A Case Study of Urban Agglomeration in Yellow River Basin, China," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    8. Zhao, Yabo & Wang, Shaojian & Ge, Yuejing & Liu, Qianqian & Liu, Xiaofeng, 2017. "The spatial differentiation of the coupling relationship between urbanization and the eco-environment in countries globally: A comprehensive assessment," Ecological Modelling, Elsevier, vol. 360(C), pages 313-327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. Yiting Zhu & Xueru Pang & Chunshan Zhou & Xiong He, 2022. "Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China," IJERPH, MDPI, vol. 19(14), pages 1-25, July.
    3. Kaili Zhang & Rongrong Feng & Zhicheng Zhang & Chun Deng & Hongjuan Zhang & Kang Liu, 2022. "Exploring the Driving Factors of Remote Sensing Ecological Index Changes from the Perspective of Geospatial Differentiation: A Case Study of the Weihe River Basin, China," IJERPH, MDPI, vol. 19(17), pages 1-25, September.
    4. Zhongwu Zhang & Huimin Li & Yongjian Cao, 2022. "Research on the Coordinated Development of Economic Development and Ecological Environment of Nine Provinces (Regions) in the Yellow River Basin," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    5. Yi Huang & Qianqian Qiu & Yehua Sheng & Xiangqiang Min & Yuwei Cao, 2019. "Exploring the Relationship between Urbanization and the Eco-Environment: A Case Study of Beijing," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    6. Tang, Feng & Wang, Li & Guo, Yiqiang & Fu, Meichen & Huang, Ni & Duan, Wensheng & Luo, Ming & Zhang, Jianjun & Li, Wang & Song, Wei, 2022. "Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China," Land Use Policy, Elsevier, vol. 117(C).
    7. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    8. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    9. Pantelis Kalaitzidakis & Theofanis P. Mamuneas & Thanasis Stengos, 2008. "The Contribution of Pollution to Productivity Growth," Working Paper series 06_08, Rimini Centre for Economic Analysis.
    10. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    11. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    12. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    13. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    14. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    15. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    16. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    17. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-30, June.
    18. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    19. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    20. Elbert Dijkgraaf & Herman Vollebergh, 2005. "A Test for Parameter Homogeneity in CO 2 Panel EKC Estimations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(2), pages 229-239, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10022-:d:887930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.