IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i6p3199-d520589.html
   My bibliography  Save this article

Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations

Author

Listed:
  • Kangda Chen

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Fuquan Zhao

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Xinglong Liu

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China)

  • Han Hao

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China
    China Automotive Energy Research Center, Tsinghua University, Beijing 100084, China)

  • Zongwei Liu

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    Tsinghua Automotive Strategy Research Institute, Tsinghua University, Beijing 100084, China
    Sloan Automotive Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

Abstract

As a main measure to promote the development of China’s energy–saving and new energy vehicles, the Phase V fuel consumption regulation is dramatically different from the past four phases, especially in the test procedure, moving from the New European Driving Cycle (NEDC) to the worldwide harmonized light duty test cycle (WLTC) and corresponding test procedure (WLTP). The switch of test procedure will not only affect the effectiveness of technologies but also change the fuel consumption target of the industry. However, few studies have systematically investigated the impacts of the new WLTP on the Chinese market. This study establishes a “technology–vehicle–fleet” bottom–up framework to estimate the impacts of test procedure switching on technology effectiveness and regulation stringency. The results show that due to the WLTP being closer to the real driving condition and more stringent, almost all baseline vehicles in the WLTP have higher fuel consumption than that in the NEDC, and diesel vehicles are slightly more impacted than gasoline vehicles. In addition, the impacts are increased with the strengthening of electrification, where the fuel consumption of plug–in hybrid electric vehicles (PHEVs) and range-extended electric vehicles (REEVs) in the WLTP are about 6% higher than that in the NEDC. Engine technologies that gain higher effects in low load conditions, such as turbocharging and downsizing, fuel stratified injection (FSI), lean–burn, and variable valve timing (VVT), are faced with deterioration in the WLTP. Among these, the effect of turbocharging and downsizing shows a maximum decline of 8.5%. The variable compression ratio (VCR) and stoichiometric gasoline direct injection (SGDI) are among the few technologies that benefited from procedure switching, with an average improvement of 1.6% and 0.2% respectively. Except for multi–speed transmissions, which have improvement effects in the WLTP, all automatic transmissions are faced with decreases. From the perspective of the whole fleet and national regulation target, the average fuel consumption in the WLTP will increase by about 7.5% in 2025 compared to 4 L/100 km in the NEDC. According to the current planning of the Chinese government, the fuel consumption target of Phase V is set at 4.6 L/100 km in 2025, which is equivalent to loosening the stringency by 0.3 L/100 km. In Phase VI, the target of 3.2 L/100 km is maintained, which is 30.4% stricter than that of Phase V, and the annual compound tightening rate reaches 7.5%. This means that automakers need to launch their product planning as soon as possible and expand the technology bandwidth to comply with the Phase VI fuel consumption regulation, and the government should evaluate the technical feasibility before determining the evaluation methods and targets of the next phase.

Suggested Citation

  • Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3199-:d:520589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/6/3199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/6/3199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    2. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2017. "Heuristic method for automakers' technological strategy making towards fuel economy regulations based on genetic algorithm: A China's case under corporate average fuel consumption regulation," Applied Energy, Elsevier, vol. 204(C), pages 544-559.
    3. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    4. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    5. Chenen Ma & Lina Madaniyazi & Yang Xie, 2021. "Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    6. Pavlovic, Jelica & Marotta, Alessandro & Ciuffo, Biagio, 2016. "CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures," Applied Energy, Elsevier, vol. 177(C), pages 661-670.
    7. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    8. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Mamala & Bronisław Tomczuk & Andrzej Waindok & Mariusz Graba & Krystian Hennek, 2023. "Improving the Efficiency of Spark-Ignition Internal Combustion Engine Using a Novel Electromagnetic Actuator and Adapting Increased Compression," Energies, MDPI, vol. 16(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Barouch Giechaskiel & Simone Casadei & Tommaso Rossi & Fabrizio Forloni & Andrea Di Domenico, 2021. "Measurements of the Emissions of a “Golden” Vehicle at Seven Laboratories with Portable Emission Measurement Systems (PEMS)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    3. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    4. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Katarzyna Botwińska & Arkadiusz Gola & Anna Bączyk, 2019. "Toxicity of Exhaust Fumes (CO, NO x ) of the Compression-Ignition (Diesel) Engine with the Use of Simulation," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    5. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    6. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    7. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    8. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    9. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    10. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    11. Dolatabadi, N. & Forder, M. & Morris, N. & Rahmani, R. & Rahnejat, H. & Howell-Smith, S., 2020. "Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction," Applied Energy, Elsevier, vol. 259(C).
    12. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
    13. Timothy Bodisco & Ali Zare, 2019. "Practicalities and Driving Dynamics of a Real Driving Emissions (RDE) Euro 6 Regulation Homologation Test," Energies, MDPI, vol. 12(12), pages 1-19, June.
    14. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    15. Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
    16. Gil-Sayas, Susana & Komnos, Dimitrios & Lodi, Chiara & Currò, Davide & Serra, Simone & Broatch, Alberto & Fontaras, Georgios, 2022. "Analysing the potential of a simulation-based method for the assessment of CO2 savings from eco-innovative technologies in light-duty vehicles," Energy, Elsevier, vol. 245(C).
    17. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    18. Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
    19. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    20. Cui, Yuepeng & Zou, Fumin & Xu, Hao & Chen, Zhihui & Gong, Kuangmin, 2022. "A novel optimization-based method to develop representative driving cycle in various driving conditions," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:6:p:3199-:d:520589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.