IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i9p3147-d352594.html
   My bibliography  Save this article

Environmental Impact of High Concentration Nitrate Migration in Soil System Using HYDRUS Simulation

Author

Listed:
  • Yuanyuan Zhang

    (School of Material Science and Engineering/School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China)

  • Duujong Lee

    (Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan)

  • Jing Ding

    (School of Material Science and Engineering/School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China)

  • Jianfeng Lu

    (School of Material Science and Engineering/School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China)

Abstract

Nitrate is a promising heat transfer fluid in solar thermal power and nuclear power systems, but its leakage can cause serious environmental problems. The present paper investigates the deep and prolonged migration of high concentrations of nitrate into the soil system, and the associated diffusion range is studied to estimate and reduce the environmental pollution caused by nitrate leaks. The vertical nitrate contaminated range is mainly impacted by annual precipitation, soil properties and groundwater depth, while the horizontal contaminated range is mainly affected by the initial leakage area. During the process, the vertical contaminated range first continuously enlarges, and then decreases after a long time. The nitrate contaminant can exist and affect the environment for as long as 115–625 years, and the nitrate contamination time can be even longer in dry regions. Since nitrate diffuses more quickly in unsaturated regions rather than in saturated regions, the migration region and contaminated range both decrease as the groundwater depth is increased.

Suggested Citation

  • Yuanyuan Zhang & Duujong Lee & Jing Ding & Jianfeng Lu, 2020. "Environmental Impact of High Concentration Nitrate Migration in Soil System Using HYDRUS Simulation," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3147-:d:352594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/9/3147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/9/3147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    2. Deborah L. Leslie & W. Berry Lyons, 2018. "Variations in Dissolved Nitrate, Chloride, and Sulfate in Precipitation, Reservoir, and Tap Waters, Columbus, Ohio," IJERPH, MDPI, vol. 15(8), pages 1-15, August.
    3. Jörg Schullehner & Leslie Stayner & Birgitte Hansen, 2017. "Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems," IJERPH, MDPI, vol. 14(3), pages 1-9, March.
    4. Francesco Parrino & Giovanni Camera-Roda & Vittorio Loddo & Leonardo Palmisano, 2019. "Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    5. Woli, Prem & Hoogenboom, Gerrit & Alva, Ashok, 2016. "Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions," Agricultural Water Management, Elsevier, vol. 171(C), pages 120-130.
    6. Cameira, M.R. & Fernando, R.M. & Ahuja, L.R. & Ma, L., 2007. "Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 121-136, May.
    7. Iqbal, Shahid & Guber, Andrey K. & Khan, Haroon Zaman, 2016. "Estimating nitrogen leaching losses after compost application in furrow irrigated soils of Pakistan using HYDRUS-2D software," Agricultural Water Management, Elsevier, vol. 168(C), pages 85-95.
    8. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Zhengyue Zhu & Ruihao Bian & Yajun Deng & Bo Yu & Dongliang Sun, 2023. "Multi-Objective Optimization of Graded Thermal Storage System for Direct Steam Generation with Dish Concentrators," Energies, MDPI, vol. 16(5), pages 1-21, March.
    3. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Cameira, M.R. & Rolim, João & Valente, Fernanda & Faro, Afonso & Dragosits, Ulrike & Cordovil, Cláudia M.d.S., 2019. "Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures," Land Use Policy, Elsevier, vol. 84(C), pages 278-293.
    5. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    6. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    8. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    9. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    10. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    11. Thayalakumaran, T. & Roberts, A. & Beverly, C. & Vigiak, O. & Norng, S. & Stott, K., 2016. "Assessing nitrogen fluxes from dairy farms using a modelling approach: A case study in the Moe River catchment, Victoria, Australia," Agricultural Water Management, Elsevier, vol. 178(C), pages 37-51.
    12. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    13. Cristina Prieto & Sonia Fereres & Luisa F. Cabeza, 2020. "The Role of Innovation in Industry Product Deployment: Developing Thermal Energy Storage for Concentrated Solar Power," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Wang, Xiangping & Huang, Guanhua, 2008. "Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China," Agricultural Water Management, Elsevier, vol. 95(9), pages 1011-1027, September.
    15. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    17. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    18. Cameira, M.R. & Pereira, A. & Ahuja, L. & Ma, L., 2014. "Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 146(C), pages 346-360.
    19. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Lutz, Femke & Stoorvogel, Jetse J. & Müller, Christoph, 2019. "Options to model the effects of tillage on N2O emissions at the global scale," Ecological Modelling, Elsevier, vol. 392(C), pages 212-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3147-:d:352594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.