IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v171y2016icp120-130.html
   My bibliography  Save this article

Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions

Author

Listed:
  • Woli, Prem
  • Hoogenboom, Gerrit
  • Alva, Ashok

Abstract

The Columbia Basin in the Pacific Northwest is a highly productive area for potatoes in the United States. Here, nitrate is the most frequently documented groundwater contaminant, and the challenge of maximizing crop productivity while minimizing the nitrate pollution still remains. This study assessed the responses of tuber yield, nitrate leaching, and profit margin to irrigation water amount, irrigation interval, nitrogen application rate, and soil type using 30 years of historical weather data and two representative soils in three locations of this region. A potato model was used to simulate the response variables for a total of 7500 scenarios (5 irrigation intervals×5 irrigation amounts×5 nitrogen rates×2 soil types×30 years) for each location. The results showed that nitrate leaching was greater with a larger irrigation—, a longer irrigation interval, a higher nitrogen rate, and a lighter soil. Tuber yield was larger with a smaller irrigation, a higher nitrogen rate, and a heavier soil. Profit margin was larger with a smaller irrigation and a heavier soil. The optimum amount of irrigation water for the study region was 400mm, at which both tuber yields and profit margins were the largest with the nitrogen application rate of 336kgha−1. The increase in leaching with a larger irrigation was smaller for a longer irrigation interval and a lighter soil but larger for a higher nitrogen rate. These findings might be helpful to potato growers in this region in identifying irrigation and nitrogen application rates aimed toward maximizing yields and profits while minimizing the nitrate contamination of groundwater.

Suggested Citation

  • Woli, Prem & Hoogenboom, Gerrit & Alva, Ashok, 2016. "Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions," Agricultural Water Management, Elsevier, vol. 171(C), pages 120-130.
  • Handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:120-130
    DOI: 10.1016/j.agwat.2016.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416301068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    2. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    3. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    4. Poch-Massegú, R. & Jiménez-Martínez, J. & Wallis, K.J. & Ramírez de Cartagena, F. & Candela, L., 2014. "Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions," Agricultural Water Management, Elsevier, vol. 134(C), pages 1-13.
    5. Arora, V.K. & Nath, J.C. & Singh, C.B., 2013. "Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model," Agricultural Water Management, Elsevier, vol. 124(C), pages 69-76.
    6. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    7. Stastná, M. & Toman, F. & Dufková, J., 2010. "Usage of SUBSTOR model in potato yield prediction," Agricultural Water Management, Elsevier, vol. 97(2), pages 286-290, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palosuo, Taru & Hoffmann, Munir P. & Rötter, Reimund P. & Lehtonen, Heikki S., 2021. "Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region," Agricultural Systems, Elsevier, vol. 190(C).
    2. Chen, Yi-min & Zhang, Jin-yuan & Xu, Xin & Qu, Hong-yun & Hou, Meng & Zhou, Ke & Jiao, Xiao-guang & Sui, Yue-yu, 2018. "Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 165-170.
    3. Yuanyuan Zhang & Duujong Lee & Jing Ding & Jianfeng Lu, 2020. "Environmental Impact of High Concentration Nitrate Migration in Soil System Using HYDRUS Simulation," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    4. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Wagg, Cameron & Hann, Sheldon & Kupriyanovich, Yulia & Li, Sheng, 2021. "Timing of short period water stress determines potato plant growth, yield and tuber quality," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Shengchun Li & Huoyun Chen & Shuochen Jiang & Fengqin Hu & Danying Xing & Bin Du, 2023. "Selenium and Nitrogen Fertilizer Management Improves Potato Root Function, Photosynthesis, Yield and Selenium Enrichment," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    8. Liang, Hao & Lv, Haofeng & Batchelor, William D. & Lian, Xiaojuan & Wang, Zhengxiang & Lin, Shan & Hu, Kelin, 2020. "Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    10. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    11. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    12. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Woli, Prem & Hoogenboom, Gerrit, 2018. "Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest," Agricultural Water Management, Elsevier, vol. 201(C), pages 177-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woli, Prem & Hoogenboom, Gerrit, 2018. "Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest," Agricultural Water Management, Elsevier, vol. 201(C), pages 177-187.
    2. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    3. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Badr, M.A. & El-Tohamy, W.A. & Salman, S.R. & Gruda, N., 2022. "Yield and water use relationships of potato under different timing and severity of water stress," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Vashisht, B.B. & Nigon, T. & Mulla, D.J. & Rosen, C. & Xu, H. & Twine, T. & Jalota, S.K., 2015. "Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: Field and simulation study," Agricultural Water Management, Elsevier, vol. 152(C), pages 198-206.
    7. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Grados, D. & García, S. & Schrevens, E., 2020. "Assessing the potato yield gap in the Peruvian Central Andes," Agricultural Systems, Elsevier, vol. 181(C).
    9. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    10. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    11. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    12. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    13. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    14. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    15. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    16. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    17. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    18. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Zhao Chen & Xv Liu & Junpeng Niu & Wennan Zhou & Tian Zhao & Wenbo Jiang & Jian Cui & Robert Kallenbach & Quanzhen Wang, 2019. "Optimizing irrigation and nitrogen fertilization for seed yield in western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve] using a large multi-factorial field design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    20. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:120-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.