IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i10p3417-d357945.html
   My bibliography  Save this article

Distribution of COVID-19 Morbidity Rate in Association with Social and Economic Factors in Wuhan, China: Implications for Urban Development

Author

Listed:
  • Heyuan You

    (School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou 310018, China
    Department of City and Regional Planning, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA)

  • Xin Wu

    (School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Xuxu Guo

    (School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

Abstract

Social and economic factors relate to the prevention and control of infectious diseases. The purpose of this paper was to assess the distribution of COVID-19 morbidity rate in association with social and economic factors and discuss the implications for urban development that help to control infectious diseases. This study was a cross-sectional study. In this study, social and economic factors were classified into three dimensions: built environment, economic activities, and public service status. The method applied in this study was the spatial regression analysis. In the 13 districts in Wuhan, the spatial regression analysis was applied. The results showed that: 1) increasing population density, construction land area proportion, value-added of tertiary industry per unit of land area, total retail sales of consumer goods per unit of land area, public green space density, aged population density were associated with an increased COVID-19 morbidity rate due to the positive characteristics of estimated coefficients of these variables. 2) increasing average building scale, GDP per unit of land area, and hospital density were associated with a decreased COVID-19 morbidity rate due to the negative characteristics of estimated coefficients of these variables. It was concluded that it is possible to control infectious diseases, such as COVID-19, by adjusting social and economic factors. We should guide urban development to improve human health.

Suggested Citation

  • Heyuan You & Xin Wu & Xuxu Guo, 2020. "Distribution of COVID-19 Morbidity Rate in Association with Social and Economic Factors in Wuhan, China: Implications for Urban Development," IJERPH, MDPI, vol. 17(10), pages 1-14, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3417-:d:357945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/10/3417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/10/3417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heyuan You & Deshao Zhou & Shenyan Wu & Xiaowei Hu & Chenmeng Bie, 2020. "Social Deprivation and Rural Public Health in China: Exploring the Relationship Using Spatial Regression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 843-864, February.
    2. Suk, J.E. & Semenza, J.C., 2011. "Future infectious disease threats to Europe," American Journal of Public Health, American Public Health Association, vol. 101(11), pages 2068-2079.
    3. Lowcock, E.C. & Rosella, L.C. & Foisy, J. & McGeer, A. & Crowcroft, N., 2012. "The social determinants of health and pandemic h1n1 2009 influenza severity," American Journal of Public Health, American Public Health Association, vol. 102(8), pages 51-58.
    4. Paul Rutter & Oliver Mytton & Matthew Mak & Liam Donaldson, 2012. "Socio-economic disparities in mortality due to pandemic influenza in England," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 57(4), pages 745-750, August.
    5. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    6. Jixia Huang & Jinfeng Wang & Yanchen Bo & Chengdong Xu & Maogui Hu & Dacang Huang, 2014. "Identification of Health Risks of Hand, Foot and Mouth Disease in China Using the Geographical Detector Technique," IJERPH, MDPI, vol. 11(3), pages 1-17, March.
    7. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru Wang & Lingbo Liu & Hao Wu & Zhenghong Peng, 2022. "Correlation Analysis between Urban Elements and COVID-19 Transmission Using Social Media Data," IJERPH, MDPI, vol. 19(9), pages 1-17, April.
    2. Bopaki Phogole & Kowiyou Yessoufou, 2023. "Greener Neighbourhoods Show Resilience to the Spread but Not Severity of COVID-19 Infection in South Africa," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    3. James Duminy, 2023. "Critical Commentary: Beyond growth and density: Recentring the demographic drivers of urban health and risk in the global south," Urban Studies, Urban Studies Journal Limited, vol. 60(8), pages 1365-1376, June.
    4. Quim Zaldo-Aubanell & Ferran Campillo i López & Albert Bach & Isabel Serra & Joan Olivet-Vila & Marc Saez & David Pino & Roser Maneja, 2021. "Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study," IJERPH, MDPI, vol. 18(7), pages 1-20, April.
    5. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    6. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    7. Gómez-Lobo, Andrés & Gutiérrez, Mauro & Huamaní, Sandro & Marino, Diego & Serebrisky, Tomás & Solís, Ben, 2022. "Access to water and COVID-19: a regression discontinuity analysis for the peri-urban areas of Metropolitan Lima, Peru," IDB Publications (Working Papers) 12332, Inter-American Development Bank.
    8. Jingjing Wang & Xueying Wu & Ruoyu Wang & Dongsheng He & Dongying Li & Linchuan Yang & Yiyang Yang & Yi Lu, 2021. "Review of Associations between Built Environment Characteristics and Severe Acute Respiratory Syndrome Coronavirus 2 Infection Risk," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    9. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    10. Qian Liu & Wei Liu & Dexuan Sha & Shubham Kumar & Emily Chang & Vishakh Arora & Hai Lan & Yun Li & Zifu Wang & Yadong Zhang & Zhiran Zhang & Jackson T. Harris & Srikar Chinala & Chaowei Yang, 2020. "An Environmental Data Collection for COVID-19 Pandemic Research," Data, MDPI, vol. 5(3), pages 1-13, August.
    11. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    12. Qiang Niu & Wanxian Wu & Jie Shen & Jiaxin Huang & Qiling Zhou, 2021. "Relationship between Built Environment and COVID-19 Dispersal Based on Age Stratification: A Case Study of Wuhan," IJERPH, MDPI, vol. 18(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Koomson & Moses Okumu & David Ansong, 2022. "Introducing the Disease Outbreak Resilience Index (DORI) Using the Demographic and Health Surveys Data from sub-Saharan Africa," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(3), pages 1149-1175, August.
    2. Jan C. Semenza, 2015. "Prototype Early Warning Systems for Vector-Borne Diseases in Europe," IJERPH, MDPI, vol. 12(6), pages 1-19, June.
    3. Albani, Viviana & Welsh, Claire E. & Brown, Heather & Matthews, Fiona E. & Bambra, Clare, 2022. "Explaining the deprivation gap in COVID-19 mortality rates: A decomposition analysis of geographical inequalities in England," Social Science & Medicine, Elsevier, vol. 311(C).
    4. Desbordes, Rodolphe, 2021. "Spatial dynamics of major infectious diseases outbreaks: A global empirical assessment," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    5. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    6. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    7. Anna M. Ferragina & Giulia Nunziante, 2018. "Are Italian firms performances influenced by innovation of domestic and foreign firms nearby in space and sectors?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 335-360, September.
    8. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    9. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    10. Yingcheng Li & Kai Zhu, 2017. "Spatial dependence and heterogeneity in the location processes of new high-tech firms in Nanjing, China," Papers in Regional Science, Wiley Blackwell, vol. 96(3), pages 519-535, August.
    11. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    12. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    13. Tomasz Kijek & Anna Matras-Bolibok, 2020. "Knowledge-intensive Specialisation and Total Factor Productivity (TFP) in the EU Regional Scope," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 68(1), pages 181-188.
    14. Burhan Can Karahasan & Firat Bilgel, 2018. "Economic Geography, Growth Dynamics and Human Capital Accumulation in Turkey: Evidence from Regional and Micro Data," Working Papers 1233, Economic Research Forum, revised 10 Oct 2018.
    15. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    16. Liv Osland & Inge Thorsen, 2013. "Spatial Impacts, Local Labour Market Characteristics and Housing Prices," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2063-2083, August.
    17. Quentin Frère & Matthieu Leprince & Sonia Paty, 2014. "The Impact of Intermunicipal Cooperation on Local Public Spending," Urban Studies, Urban Studies Journal Limited, vol. 51(8), pages 1741-1760, June.
    18. Bottasso, Anna & Conti, Maurizio & Ferrari, Claudio & Tei, Alessio, 2014. "Ports and regional development: A spatial analysis on a panel of European regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 44-55.
    19. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    20. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3417-:d:357945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.