IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8945-8961d54672.html
   My bibliography  Save this article

CFD Analysis of Regenerative Chambers for Energy Efficiency Improvement in Glass Production Plants

Author

Listed:
  • Davide Basso

    (DIME—Department of Mechanical, Energy, Logistics Engineering and Engineering Management, Polytechnic School, Genoa University, via Montallegro 1, Genoa 16145, Italy)

  • Carlo Cravero

    (DIME—Department of Mechanical, Energy, Logistics Engineering and Engineering Management, Polytechnic School, Genoa University, via Montallegro 1, Genoa 16145, Italy)

  • Andrea P. Reverberi

    (DCCI—Department of Chemistry and Industrial Chemistry, Genoa University, via Dodecaneso 31, Genoa 16146, Italy)

  • Bruno Fabiano

    (DICCA—Department of Civil, Chemical and Environmental Engineering, Polytechnic School, Genoa University, via Opera Pia 15, Genoa 16145, Italy)

Abstract

The overall efficiency of a regenerative chamber for a glass furnace mainly relies on the thermo-fluid dynamics of air and waste gas alternatively flowing through stacks of refractory bricks (checkers) determining the heat recovery. A numerical approach could effectively support the design strategies in order to achieve a deeper understanding of the current technology and hopefully suggest new perspectives of improvement. A computational fluid dynamics (CFD) scheme for the regenerator is proposed, where the real geometry of the solid phase is modelled as a porous solid phase exchanging heat with the gas stream. Satisfactory data fitting proved the reliability of the present approach, whose applications are proposed in the last section of this study, to confirm how such a CFD modelling could be helpful in improving the overall energy efficiency of the regeneration chamber.

Suggested Citation

  • Davide Basso & Carlo Cravero & Andrea P. Reverberi & Bruno Fabiano, 2015. "CFD Analysis of Regenerative Chambers for Energy Efficiency Improvement in Glass Production Plants," Energies, MDPI, vol. 8(8), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8945-8961:d:54672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emilio Palazzi & Fabio Currò & Bruno Fabiano, 2013. "Accidental Continuous Releases from Coal Processing in Semi-Confined Environment," Energies, MDPI, vol. 6(10), pages 1-20, September.
    2. Miguel A. Gómez & Miguel A. Álvarez Feijoo & Roberto Comesaña & Pablo Eguía & José L. Míguez & Jacobo Porteiro, 2012. "CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings," Energies, MDPI, vol. 5(7), pages 1-19, June.
    3. Yungang Wang & Heng Chen & Zhongya Chen & Haidong Ma & Qinxin Zhao, 2015. "Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces," Energies, MDPI, vol. 8(2), pages 1-13, February.
    4. Sardeshpande, Vishal & Anthony, Renil & Gaitonde, U.N. & Banerjee, Rangan, 2011. "Performance analysis for glass furnace regenerator," Applied Energy, Elsevier, vol. 88(12), pages 4451-4458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    2. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.
    3. Bo Gao & Chunsheng Wang & Yukun Hu & C. K. Tan & Paul Alun Roach & Liz Varga, 2018. "Function Value-Based Multi-Objective Optimisation of Reheating Furnace Operations Using Hooke-Jeeves Algorithm," Energies, MDPI, vol. 11(9), pages 1-18, September.
    4. Carlo Cravero & Davide De Domenico, 2019. "The Use of CFD for the Design and Development of Innovative Configurations in Regenerative Glass Production Furnaces," Energies, MDPI, vol. 12(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    2. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    3. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Carlo Cravero & Davide De Domenico, 2019. "The Use of CFD for the Design and Development of Innovative Configurations in Regenerative Glass Production Furnaces," Energies, MDPI, vol. 12(13), pages 1-17, June.
    5. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    6. Li, He & Jia, Hongwei & Zhong, Ke & Zhai, Zhiqiang (John), 2021. "Analysis of factors influencing actual absorption of solar energy by building walls," Energy, Elsevier, vol. 215(PB).
    7. Marine Auzeby & Shen Wei & Chris Underwood & Jess Tindall & Chao Chen & Haoshu Ling & Richard Buswell, 2016. "Effectiveness of Using Phase Change Materials on Reducing Summer Overheating Issues in UK Residential Buildings with Identification of Influential Factors," Energies, MDPI, vol. 9(8), pages 1-16, August.
    8. Dorota Brzezińska, 2018. "Ventilation System Influence on Hydrogen Explosion Hazards in Industrial Lead-Acid Battery Rooms," Energies, MDPI, vol. 11(8), pages 1-11, August.
    9. Lee, M.C. & Kuo, C.H. & Wang, F.J., 2016. "Utilizing the building envelope for power generation and conservation," Energy, Elsevier, vol. 97(C), pages 1-10.
    10. Natalia Cid & Ana Ogando & M. A. Gómez, 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials," Energies, MDPI, vol. 10(9), pages 1-12, August.
    11. El-Shafie, Mostafa & Kambara, Shinji & Hayakawa, Yukio & Hussien, A.A., 2021. "Integration between energy and exergy analyses to assess the performance of furnace regenerative and ammonia decomposition systems," Renewable Energy, Elsevier, vol. 175(C), pages 232-243.
    12. Stack, Daniel C. & Curtis, Daniel & Forsberg, Charles, 2019. "Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage," Applied Energy, Elsevier, vol. 242(C), pages 782-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8945-8961:d:54672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.