IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipbs0360544220320958.html
   My bibliography  Save this article

Analysis of factors influencing actual absorption of solar energy by building walls

Author

Listed:
  • Li, He
  • Jia, Hongwei
  • Zhong, Ke
  • Zhai, Zhiqiang (John)

Abstract

The reduced heat loss of a solid wall caused by solar radiation is the solar energy actually absorbed by the solid wall (SEW). The absorbed solar energy calculated by using the radiation absorption coefficient of the wall surface is thus not the SEW. This study analyzes the parameters that may affect the SEW, including the heat accumulation coefficient of the wall (S), the heat-transfer coefficient of the south wall’s outer surface (h), the radiation intensity (I), the consecutive sunny days (D), and the outdoor air temperature (T). These influential factors on the solar absorptance of the south-facing wall (εwall) were synthetically evaluated with multiple nonlinear regression analysis. The results indicate that εwall is significantly affected by three parameters (i.e., S, h, D): εwall is high when S is large or h is small or D is small. I and T have little impact on εwall. A prediction model of εwall was further developed by using multivariate nonlinear regression, which can greatly improve the efficiency of building energy consumption analysis. The prediction model can also efficiently determine the effect of wind speed and direction on εwall in winter for optimizing building orientation and layout.

Suggested Citation

  • Li, He & Jia, Hongwei & Zhong, Ke & Zhai, Zhiqiang (John), 2021. "Analysis of factors influencing actual absorption of solar energy by building walls," Energy, Elsevier, vol. 215(PB).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220320958
    DOI: 10.1016/j.energy.2020.118988
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    2. Yang, Hongxing & Zhu, Zuojin & Burnett, John, 2000. "Simulation of the behaviour of transparent insulation materials in buildings in northern China," Applied Energy, Elsevier, vol. 67(3), pages 293-306, November.
    3. Miguel A. Gómez & Miguel A. Álvarez Feijoo & Roberto Comesaña & Pablo Eguía & José L. Míguez & Jacobo Porteiro, 2012. "CFD Simulation of a Concrete Cubicle to Analyze the Thermal Effect of Phase Change Materials in Buildings," Energies, MDPI, vol. 5(7), pages 1-19, June.
    4. Chen, Youming & Xiao, Yaling & Zheng, Siqian & Liu, Yang & Li, Yupeng, 2018. "Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of China," Energy, Elsevier, vol. 163(C), pages 1115-1124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Lu & Faisal Khaled Aldawood & Wanyu Hu & Yuxin Ma & Mohamed Kchaou & Chengjun Zhang & Xinpeng Yang & Ruitong Yang & Zitong Qi & Dong Li, 2023. "Optimization Strategy for Selecting the Combination Structure of Multilayer Phase Change Material (PCM) Glazing Windows under Different Climate Zones," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    3. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    5. Lee, M.C. & Kuo, C.H. & Wang, F.J., 2016. "Utilizing the building envelope for power generation and conservation," Energy, Elsevier, vol. 97(C), pages 1-10.
    6. Qiu, Changyu & Yang, Hongxing, 2022. "Dynamic coupling of a heat transfer model and whole building simulation for a novel cadmium telluride-based vacuum photovoltaic glazing," Energy, Elsevier, vol. 250(C).
    7. Gómez-Muñoz, Victor M. & Porta-Gándara, Miguel Angel, 2003. "Simplified architectural method for the solar control optimization of awnings and external walls in houses in hot and dry climates," Renewable Energy, Elsevier, vol. 28(1), pages 111-127.
    8. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    9. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    10. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    11. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    12. Jadwiga Świrska-Perkowska & Zbigniew Perkowski, 2021. "Selection of Parameters for Accumulating Layer of Solar Walls with Transparent Insulation," Energies, MDPI, vol. 14(5), pages 1-55, February.
    13. Natalia Cid & Ana Ogando & M. A. Gómez, 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials," Energies, MDPI, vol. 10(9), pages 1-12, August.
    14. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    15. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
    16. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Li, Houpei & Wang, Meng & Zhang, Fujia & Ji, Jie & Song, Aotian, 2023. "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," Renewable Energy, Elsevier, vol. 205(C), pages 1040-1056.
    17. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    18. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.
    19. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    20. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220320958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.