IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2312-2336d47274.html
   My bibliography  Save this article

Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

Author

Listed:
  • Wenying Liu

    (Electrical and Electronic Engineering Institute, Mailbox 435, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Rundong Ge

    (Electrical and Electronic Engineering Institute, Mailbox 435, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Quancheng Lv

    (Electrical and Electronic Engineering Institute, Mailbox 435, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Huiyong Li

    (Electrical and Electronic Engineering Institute, Mailbox 435, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

  • Jiangbei Ge

    (Electrical and Electronic Engineering Institute, Mailbox 435, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China)

Abstract

For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

Suggested Citation

  • Wenying Liu & Rundong Ge & Quancheng Lv & Huiyong Li & Jiangbei Ge, 2015. "Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power," Energies, MDPI, vol. 8(4), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2312-2336:d:47274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Kang, Junjie & Yuan, Jiahai & Hu, Zhaoguang & Xu, Yan, 2012. "Review on wind power development and relevant policies in China during the 11th Five-Year-Plan period," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1907-1915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zuo & Yinhong Li & Dongyuan Shi & Xianzhong Duan, 2017. "Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs), Static Var Compensator (SVC) and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs) in Multimachin," Energies, MDPI, vol. 10(4), pages 1-23, April.
    2. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    3. Rundong Ge & Wenying Liu & Huiyong Li & Jianzong Zhuo & Weizhou Wang, 2015. "Research on the Multi-Period Small-Signal Stability Probability of a Power System with Wind Farms Based on the Markov Chain," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    4. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    5. Rui Quan & Wenxia Pan, 2017. "A Low-Order System Frequency Response Model for DFIG Distributed Wind Power Generation Systems Based on Small Signal Analysis," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    4. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    5. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    6. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    7. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    9. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    10. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    11. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    12. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    13. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    14. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    15. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    16. Andrea Cavagna & Antonio Culla & Xiao Feng & Irene Giardina & Tomas S. Grigera & Willow Kion-Crosby & Stefania Melillo & Giulia Pisegna & Lorena Postiglione & Pablo Villegas, 2022. "Marginal speed confinement resolves the conflict between correlation and control in collective behaviour," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    19. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    20. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2312-2336:d:47274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.