IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048118.html
   My bibliography  Save this article

Collective Almost Synchronisation in Complex Networks

Author

Listed:
  • Murilo S Baptista
  • Hai-Peng Ren
  • Johen C M Swarts
  • Rodrigo Carareto
  • Henk Nijmeijer
  • Celso Grebogi

Abstract

This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

Suggested Citation

  • Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
  • Handle: RePEc:plo:pone00:0048118
    DOI: 10.1371/journal.pone.0048118
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048118
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048118&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferrari, F.A.S. & Viana, R.L. & Reis, A.S. & Iarosz, K.C. & Caldas, I.L. & Batista, A.M., 2018. "A network of networks model to study phase synchronization using structural connection matrix of human brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 162-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    3. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    5. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    6. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    7. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    8. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    9. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    11. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    12. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    13. Ofer Tchernichovski & Marissa King & Peter Brinkmann & Xanadu Halkias & Daniel Fimiarz & Laurent Mars & Dalton Conley, 2017. "Tradeoff Between Distributed Social Learning and Herding Effect in Online Rating Systems," SAGE Open, , vol. 7(1), pages 21582440176, February.
    14. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    15. Natalie Fridman & Gal A. Kaminka, 2010. "Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 348-372, December.
    16. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    17. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    18. Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
    19. Jijun Zhao & Ferenc Szidarovszky & Miklos N. Szilagyi, 2007. "Finite Neighborhood Binary Games: a Structural Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-3.
    20. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.