IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i8p5444-5459d39506.html
   My bibliography  Save this article

Geothermal Potential Evaluation for Northern Chile and Suggestions for New Energy Plans

Author

Listed:
  • Monia Procesi

    (Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy
    Unione Geotermica Italiana (UGI), Largo Lucio Lazzarino 1, 56126 Pisa, Italy)

Abstract

Chile is a country rich in natural resources, and it is the world’s largest producer and exporter of copper. Mining is the main industry and is an essential part of the Chilean economy, but the country has limited indigenous fossil fuels—over 90% of the country’s fossil fuels must be imported. The electricity market in Chile comprises two main independent systems: the Northern Interconnected Power Grid (SING) and the Central Interconnected Power Grid (SIC). Currently, the primary Chilean energy source is imported fossil fuels, whereas hydropower represents the main indigenous source. Other renewables such as wind, solar, biomass and geothermics are as yet poorly developed. Specifically, geothermal energy has not been exploited in Chile, but among all renewables it has the greatest potential. The transition from thermal power plants to renewable energy power plants is an important target for the Chilean Government in order to reduce dependence on imported fossil fuels. In this framework, the proposed study presents an evaluation of the geothermal potential for northern Chile in terms of power generation. The El Tatio, Surire, Puchuldiza, Orriputunco-Olca and Apacheta geothermal fields are considered for the analysis. The estimated electrical power is approximately 1300 MWe, and the energy supply is 10,200 GWh/year. This means that more than 30% of the SING energy could be provided from geothermal energy, reducing the dependence on imported fossil fuels, saving 8 Mton/year of CO 2 and supplying the mining industry, which is Chile’s primary energy user.

Suggested Citation

  • Monia Procesi, 2014. "Geothermal Potential Evaluation for Northern Chile and Suggestions for New Energy Plans," Energies, MDPI, vol. 7(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5444-5459:d:39506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/8/5444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/8/5444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    2. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    2. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    3. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    4. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
    5. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    6. Daniele Cinti & Monia Procesi & Pier Paolo Poncia, 2018. "Evaluation of the Theoretical Geothermal Potential of Inferred Geothermal Reservoirs within the Vicano–Cimino and the Sabatini Volcanic Districts (Central Italy) by the Application of the Volume Metho," Energies, MDPI, vol. 11(1), pages 1-12, January.
    7. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    8. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    9. Xie, Qiyuan & Tu, Ran & Jiang, Xi & Li, Kang & Zhou, Xuejin, 2014. "The leakage behavior of supercritical CO2 flow in an experimental pipeline system," Applied Energy, Elsevier, vol. 130(C), pages 574-580.
    10. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
    11. Cui, Guodong & Ren, Shaoran & Rui, Zhenhua & Ezekiel, Justin & Zhang, Liang & Wang, Hongsheng, 2018. "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system," Applied Energy, Elsevier, vol. 227(C), pages 49-63.
    12. Hofmann, Hannes & Babadagli, Tayfun & Zimmermann, Günter, 2014. "Hot water generation for oil sands processing from enhanced geothermal systems: Process simulation for different hydraulic fracturing scenarios," Applied Energy, Elsevier, vol. 113(C), pages 524-547.
    13. Zhang, Xiaodong & Duncan, Ian J. & Huang, Gordon & Li, Gongchen, 2014. "Identification of management strategies for CO2 capture and sequestration under uncertainty through inexact modeling," Applied Energy, Elsevier, vol. 113(C), pages 310-317.
    14. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    15. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    16. G. Tamburello & G. Chiodini & G. Ciotoli & M. Procesi & D. Rouwet & L. Sandri & N. Carbonara & C. Masciantonio, 2022. "Global thermal spring distribution and relationship to endogenous and exogenous factors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Soubeyran, A. & Rouabhi, A. & Coquelet, C., 2019. "Thermodynamic analysis of carbon dioxide storage in salt caverns to improve the Power-to-Gas process," Applied Energy, Elsevier, vol. 242(C), pages 1090-1107.
    18. Uchechukwu Nwaiwu & Matthew Leach & Lirong Liu, 2023. "Development of an Improved Decision Support Tool for Geothermal Site Selection in Nigeria Based on Comprehensive Criteria," Energies, MDPI, vol. 16(22), pages 1-28, November.
    19. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Gregory Tarteh Mwenketishi & Hadj Benkreira & Nejat Rahmanian, 2023. "A Comprehensive Review on Carbon Dioxide Sequestration Methods," Energies, MDPI, vol. 16(24), pages 1-42, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5444-5459:d:39506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.