IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i7p4087-4097d37517.html
   My bibliography  Save this article

New Approach to Fuelization of Herbaceous Lignocelluloses through Simultaneous Saccharification and Fermentation Followed by Photocatalytic Reforming

Author

Listed:
  • Masahide Yasuda

    (Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan)

  • Ryo Kurogi

    (Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan)

  • Hikaru Tsumagari

    (Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan)

  • Tsutomu Shiragami

    (Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan)

  • Tomoko Matsumoto

    (Center for Collaborative Research and Community Cooperation, University of Miyazaki, Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan)

Abstract

Bio-fuelization of herbaceous lignocelluloses through a simultaneous saccharification and fermentation process (SSF) and photocatalytic reforming (photo-Reform) was examined. The SSF of the alkali-pretreated bamboo, rice straw, and silvergrass was performed in an acetate buffer (pH 5.0) using cellulase, xylanase, and Saccharomyces cerevisiae at 34 °C. Ethanol was produced in 63%–85% yields, while xylose was produced in 74%–97% yields without being fermented because xylose cannot be fermented by S. cerevisiae . After the removal of ethanol from the aqueous SSF solution, the SSF solution was subjected to a photo-Reform step where xylose was transformed into hydrogen by a photocatalytic reaction using Pt-loaded TiO 2 (2 wt % of Pt content) under irradiation by a high pressure mercury lamp. The photo-Reform process produced hydrogen in nearly a yield of ten theoretical equivalents to xylose. Total energy was recovered as ethanol and hydrogen whose combustion energy was 73.4%–91.1% of that of the alkali-pretreated lignocelluloses (holocellulose).

Suggested Citation

  • Masahide Yasuda & Ryo Kurogi & Hikaru Tsumagari & Tsutomu Shiragami & Tomoko Matsumoto, 2014. "New Approach to Fuelization of Herbaceous Lignocelluloses through Simultaneous Saccharification and Fermentation Followed by Photocatalytic Reforming," Energies, MDPI, vol. 7(7), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4087-4097:d:37517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/7/4087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/7/4087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    2. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    3. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    2. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    3. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    5. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    6. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    7. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    8. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    9. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    10. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    11. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    12. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    15. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    16. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    17. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    18. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    19. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:7:p:4087-4097:d:37517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.