IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i3p1590-1603d24127.html
   My bibliography  Save this article

Understanding the Mechanism of Cypress Liquefaction in Hot-Compressed Water through Characterization of Solid Residues

Author

Listed:
  • Hua-Min Liu

    (School of Grain and Food, Henan University of Technology, Zhengzhou 450001, China
    State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China)

  • Ming-Fei Li

    (Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China)

  • Sheng Yang

    (Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China)

  • Run-Cang Sun

    (State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
    Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083, China)

Abstract

The mechanism of hydrothermal liquefaction of cypress was investigated by examining the effects of temperature and retention time on the characteristics of the solid residues remaining after liquefaction. The solid residues were divided into acid-soluble and acid-insoluble residues. Results showed the polymerization reactions also mainly occurred at low temperatures. The reactive fragments transformed into acid-insoluble solid residue in the form of carbon and oxygen through polymerization reactions. The process of cellulose degradation consists of two steps: an initial hydrolysis of the more solvent- accessible amorphous region and a later hydrolytic attack on the crystalline portion. Hemicelluloses were decomposed into small compounds during the initial stage of the cypress liquefaction process, and then these compounds may rearrange through polymerization to form acid-insoluble solid residues above 240 °C. The higher heating value of the solid residues obtained from liquefaction at 260–300 °C was 23.4–26.3 MJ/kg, indicating that they were suitable for combustion as a solid fuel.

Suggested Citation

  • Hua-Min Liu & Ming-Fei Li & Sheng Yang & Run-Cang Sun, 2013. "Understanding the Mechanism of Cypress Liquefaction in Hot-Compressed Water through Characterization of Solid Residues," Energies, MDPI, vol. 6(3), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1590-1603:d:24127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/3/1590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/3/1590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2010. "Pyrolysis pretreatment of biomass for entrained-flow gasification," Applied Energy, Elsevier, vol. 87(1), pages 149-155, January.
    2. Akhtar, Javaid & Kuang, Soo Kim & Amin, NorAishah Saidina, 2010. "Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water," Renewable Energy, Elsevier, vol. 35(6), pages 1220-1227.
    3. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aljabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mahmoud & Hawari, Alaa H. & Al-Shamary, Noora Mahmoud, 2022. "A study to investigate the energy recovery potential from different macromolecules of a low-lipid marine Tetraselmis sp. biomass through HTL process," Renewable Energy, Elsevier, vol. 189(C), pages 78-89.
    2. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Feng & Brewer, Catherine E., 2017. "Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 673-722.
    2. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    3. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Wang, Zhi & Liu, Hui & Long, Yan & Wang, Jianxin & He, Xin, 2015. "Comparative study on alcohols–gasoline and gasoline–alcohols dual-fuel spark ignition (DFSI) combustion for high load extension and high fuel efficiency," Energy, Elsevier, vol. 82(C), pages 395-405.
    5. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    6. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    7. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    8. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    9. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    11. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    12. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    13. McCarty, Tanner & Sesmero, Juan, 2014. "Uncertainty, Irreversibility, and Investment in Second-Generation Biofuels," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 179201, Agricultural and Applied Economics Association.
    14. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    15. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    16. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    17. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    18. Li, Yu & Kesharwani, Rajkamal & Sun, Zeyi & Qin, Ruwen & Dagli, Cihan & Zhang, Meng & Wang, Donghai, 2020. "Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology," Applied Energy, Elsevier, vol. 259(C).
    19. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    20. Li, Tian & Niu, Yanqing & Wang, Liang & Shaddix, Christopher & Løvås, Terese, 2018. "High temperature gasification of high heating-rate chars using a flat-flame reactor," Applied Energy, Elsevier, vol. 227(C), pages 100-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:3:p:1590-1603:d:24127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.