IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p579-597d23092.html
   My bibliography  Save this article

Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns

Author

Listed:
  • Félix Iglesias

    (Automation Systems Group, Vienna University of Technology, Treitlstr. 1-3/ 4. Floor, Vienna A-1040, Austria)

  • Wolfgang Kastner

    (Automation Systems Group, Vienna University of Technology, Treitlstr. 1-3/ 4. Floor, Vienna A-1040, Austria)

Abstract

Forecasting and modeling building energy profiles require tools able to discover patterns within large amounts of collected information. Clustering is the main technique used to partition data into groups based on internal and a priori unknown schemes inherent of the data. The adjustment and parameterization of the whole clustering task is complex and submitted to several uncertainties, being the similarity metric one of the first decisions to be made in order to establish how the distance between two independent vectors must be measured. The present paper checks the effect of similarity measures in the application of clustering for discovering representatives in cases where correlation is supposed to be an important factor to consider, e.g., time series. This is a necessary step for the optimized design and development of efficient clustering-based models, predictors and controllers of time-dependent processes, e.g., building energy consumption patterns. In addition, clustered-vector balance is proposed as a validation technique to compare clustering performances.

Suggested Citation

  • Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:579-597:d:23092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
    2. Pan Duan & Kaigui Xie & Tingting Guo & Xiaogang Huang, 2011. "Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques," Energies, MDPI, vol. 4(1), pages 1-12, January.
    3. Räsänen, Teemu & Ruuskanen, Juhani & Kolehmainen, Mikko, 2008. "Reducing energy consumption by using self-organizing maps to create more personalized electricity use information," Applied Energy, Elsevier, vol. 85(9), pages 830-840, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
    2. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    3. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    4. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, vol. 6(11), pages 1-24, November.
    5. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    6. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    7. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    8. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    9. Javier Pórtoles & Camino González & Javier M. Moguerza, 2018. "Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach," Energies, MDPI, vol. 11(6), pages 1-21, June.
    10. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    11. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    12. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
    13. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    14. Bijay Neupane & Wei Lee Woon & Zeyar Aung, 2017. "Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting," Energies, MDPI, vol. 10(1), pages 1-27, January.
    15. Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.
    16. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2017. "k-means based load estimation of domestic smart meter measurements," Applied Energy, Elsevier, vol. 194(C), pages 333-342.
    17. George P. Papaioannou & Christos Dikaiakos & George Evangelidis & Panagiotis G. Papaioannou & Dionysios S. Georgiadis, 2015. "Co-Movement Analysis of Italian and Greek Electricity Market Wholesale Prices by Using a Wavelet Approach," Energies, MDPI, vol. 8(10), pages 1-30, October.
    18. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
    19. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    20. Mahmoud, Mohamed A. & Alajmi, Ali F., 2010. "Quantitative assessment of energy conservation due to public awareness campaigns using neural networks," Applied Energy, Elsevier, vol. 87(1), pages 220-228, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:579-597:d:23092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.