IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i12p5439-5452d22332.html
   My bibliography  Save this article

A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

Author

Listed:
  • Minh Y Nguyen

    (Seoul National University, Gwanak-ro 599, Gwanak-gu, Seoul 151-744, Korea)

  • Dinh Hung Nguyen

    (Seoul National University, Gwanak-ro 599, Gwanak-gu, Seoul 151-744, Korea)

  • Yong Tae Yoon

    (Seoul National University, Gwanak-ro 599, Gwanak-gu, Seoul 151-744, Korea)

Abstract

Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging) problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e. , uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

Suggested Citation

  • Minh Y Nguyen & Dinh Hung Nguyen & Yong Tae Yoon, 2012. "A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets," Energies, MDPI, vol. 5(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:12:p:5439-5452:d:22332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/12/5439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/12/5439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengying Chen & Yifeng Wang & Liang Yang & Fuqiang Han & Yuqi Hou & Haiyun Yan, 2018. "A Variable-Structure Multi-Resonant DC–DC Converter with Smooth Switching," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Pyeong-Ik Hwang & Seong-Chul Kwon & Sang-Yun Yun, 2018. "Schedule-Based Operation Method Using Market Data for an Energy Storage System of a Customer in the Ontario Electricity Market," Energies, MDPI, vol. 11(10), pages 1-26, October.
    3. Fengbing Li & Kaigui Xie & Jiangping Yang, 2015. "Optimization and Analysis of a Hybrid Energy Storage System in a Small-Scale Standalone Microgrid for Remote Area Power Supply (RAPS)," Energies, MDPI, vol. 8(6), pages 1-25, May.
    4. Chun-Liang Liu & Yi-Shun Chiu & Yi-Hua Liu & Yeh-Hsiang Ho & Shu-Syuan Huang, 2013. "Optimization of a Fuzzy-Logic-Control-Based Five-Stage Battery Charger Using a Fuzzy-Based Taguchi Method," Energies, MDPI, vol. 6(7), pages 1-20, July.
    5. Syahrul Nizam Md Saad & Adriaan Hendrik van der Weijde, 2019. "Evaluating the Potential of Hosting Capacity Enhancement Using Integrated Grid Planning modeling Methods," Energies, MDPI, vol. 12(19), pages 1-23, September.
    6. Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
    7. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    8. Daniele Gallo & Carmine Landi & Mario Luiso & Rosario Morello, 2013. "Optimization of Experimental Model Parameter Identification for Energy Storage Systems," Energies, MDPI, vol. 6(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    2. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    3. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    4. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    5. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    6. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    7. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    8. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    9. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    10. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    11. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    12. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    13. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    14. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    15. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    16. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    17. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    18. Pradhan, Ashis Kumar & Rout, Sandhyarani & Khan, Imran Ahmed, 2021. "Does market concentration affect wholesale electricity prices? An analysis of the Indian electricity sector in the COVID-19 pandemic context," Utilities Policy, Elsevier, vol. 73(C).
    19. Celiktas, Melih Soner & Kocar, Gunnur, 2009. "A quadratic helix approach to evaluate the Turkish renewable energies," Energy Policy, Elsevier, vol. 37(11), pages 4959-4965, November.
    20. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:12:p:5439-5452:d:22332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.