IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1584-d1364095.html
   My bibliography  Save this article

Evaluation of Energy Performance Indicators and Energy Saving Opportunities for the Italian Rubber Manufacturing Industry

Author

Listed:
  • Matteo Piccioni

    (Department of Astronautical, Electrical and Energy Engineering (DIAEE), “Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Fabrizio Martini

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Chiara Martini

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Claudia Toro

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

Abstract

The objective of this work is the energy characterisation and evaluation of the energy efficiency potential of the rubber manufacturing industry in Italy, exploiting the detailed data included in energy audits by large and energy-intensive companies. This sector is divided into two sub-activities: the manufacture of rubber products and the production of tyres. Existing studies are focused mainly on tyre production, and there is a lack of quantitative evaluation of energy indicators that can provide guidance for improving process efficiency. In this work, updated global and specific energy performance indicators (EnPIs) related to the production process and to the auxiliary and general services are defined and evaluated. At the same time, targeted actions and interventions to improve the energy efficiency of the sector are analysed, showing the role of different intervention areas and their cost-effectiveness. The analysis is based on 100 Italian mandatory energy audits of the sector collected according to Art.8 EU Directive 27/2012. The applied methodology made it possible to calculate specific energy performance indicators by considering the overall and sub-process energy consumption of different production sites. Based on a detailed database containing real data from recent energy audits, this study provides an up-to-date and reliable benchmark for the rubber industry sector. In addition, the analysis of energy audits allows the identification of the most effective energy efficiency interventions for the rubber industry in terms of cost-effectiveness and payback time.

Suggested Citation

  • Matteo Piccioni & Fabrizio Martini & Chiara Martini & Claudia Toro, 2024. "Evaluation of Energy Performance Indicators and Energy Saving Opportunities for the Italian Rubber Manufacturing Industry," Energies, MDPI, vol. 17(7), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1584-:d:1364095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kanchiralla, Fayas Malik & Jalo, Noor & Thollander, Patrik & Andersson, Maria & Johnsson, Simon, 2021. "Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework," Applied Energy, Elsevier, vol. 304(C).
    2. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    3. Carlos Herce & Chiara Martini & Marcello Salvio & Claudia Toro, 2022. "Energy Performance of Italian Oil Refineries Based on Mandatory Energy Audits," Energies, MDPI, vol. 15(2), pages 1-20, January.
    4. Proskuryakova, L. & Kovalev, A., 2015. "Measuring energy efficiency: Is energy intensity a good evidence base?," Applied Energy, Elsevier, vol. 138(C), pages 450-459.
    5. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    6. Carlos Herce & Enrico Biele & Chiara Martini & Marcello Salvio & Claudia Toro, 2021. "Impact of Energy Monitoring and Management Systems on the Implementation and Planning of Energy Performance Improved Actions: An Empirical Analysis Based on Energy Audits in Italy," Energies, MDPI, vol. 14(16), pages 1-21, August.
    7. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    3. Cagno, Enrico & Accordini, Davide & Trianni, Andrea & Katic, Mile & Ferrari, Nicolò & Gambaro, Federico, 2022. "Understanding the impacts of energy efficiency measures on a Company’s operational performance: A new framework," Applied Energy, Elsevier, vol. 328(C).
    4. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    5. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis," Applied Energy, Elsevier, vol. 333(C).
    6. Chiara Martini & Claudia Toro, 2022. "Special Issue “Industry and Tertiary Sectors towards Clean Energy Transition”," Energies, MDPI, vol. 15(11), pages 1-5, June.
    7. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    8. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    9. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    10. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    11. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    12. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    13. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    14. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    15. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    16. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    17. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    18. Valeria Costantini & Mariagrazia D’Angeli & Martina Mancini & Chiara Martini & Elena Paglialunga, 2024. "An Econometric Analysis of the Energy-Saving Performance of the Italian Plastic Manufacturing Sector," Energies, MDPI, vol. 17(4), pages 1-29, February.
    19. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    20. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1584-:d:1364095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.