IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1564-d1363518.html
   My bibliography  Save this article

Comparative Analysis Using Multiple Regression Models for Forecasting Photovoltaic Power Generation

Author

Listed:
  • Burhan U Din Abdullah

    (School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201306, Uttar Pradesh, India)

  • Shahbaz Ahmad Khanday

    (School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201306, Uttar Pradesh, India)

  • Nair Ul Islam

    (School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201306, Uttar Pradesh, India)

  • Suman Lata

    (School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201306, Uttar Pradesh, India)

  • Hoor Fatima

    (School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201306, Uttar Pradesh, India)

  • Sarvar Hussain Nengroo

    (The Cho Chun Shik Graduate School of Mobility, Korea Advanced Institute of Science and Technology, Daejeon 34051, Republic of Korea
    Department of Engineering and Technology, Technical University of Denmark (DTU), 2800 Ballerup, Denmark)

Abstract

Effective machine learning regression models are useful toolsets for managing and planning energy in PV grid-connected systems. Machine learning regression models, however, have been crucial in the analysis, forecasting, and prediction of numerous parameters that support the efficient management of the production and distribution of green energy. This article proposes multiple regression models for power prediction using the Sharda University PV dataset (2022 Edition). The proposed regression model is inspired by a unique data pre-processing technique for forecasting PV power generation. Performance metrics, namely mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), R 2 -score, and predicted vs. actual value plots, have been used to compare the performance of the different regression. Simulation results show that the multilayer perceptron regressor outperforms the other algorithms, with an RMSE of 17.870 and an R 2 score of 0.9377. Feature importance analysis has been performed to determine the most significant features that influence PV power generation.

Suggested Citation

  • Burhan U Din Abdullah & Shahbaz Ahmad Khanday & Nair Ul Islam & Suman Lata & Hoor Fatima & Sarvar Hussain Nengroo, 2024. "Comparative Analysis Using Multiple Regression Models for Forecasting Photovoltaic Power Generation," Energies, MDPI, vol. 17(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1564-:d:1363518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Jing & Perry, Matthew, 2016. "A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1081-1086.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza, 2017. "Quantification of Forecast Error Costs of Photovoltaic Prosumers in Italy," Energies, MDPI, vol. 10(11), pages 1-17, November.
    2. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    3. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    4. González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
    5. Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
    6. Hugo Bezerra Menezes Leite & Hamidreza Zareipour, 2023. "Six Days Ahead Forecasting of Energy Production of Small Behind-the-Meter Solar Sites," Energies, MDPI, vol. 16(3), pages 1-14, February.
    7. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    8. Xwégnon Ghislain Agoua & Robin Girard & Georges Kariniotakis, 2021. "Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy," Energies, MDPI, vol. 14(5), pages 1-15, March.
    9. Jiang, He & Tao, Changqi & Dong, Yao & Xiong, Ren, 2021. "Robust low-rank multiple kernel learning with compound regularization," European Journal of Operational Research, Elsevier, vol. 295(2), pages 634-647.
    10. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    11. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    12. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    13. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Probabilistic solar power forecasting based on weather scenario generation," Applied Energy, Elsevier, vol. 266(C).
    14. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    15. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    16. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    17. Tartakovsky, Alexandre M. & Ma, Tong & Barajas-Solano, David A. & Tipireddy, Ramakrishna, 2023. "Physics-informed Gaussian process regression for states estimation and forecasting in power grids," International Journal of Forecasting, Elsevier, vol. 39(2), pages 967-980.
    18. Yaxin Zhang & Tao Hu, 2022. "Ensemble Interval Prediction for Solar Photovoltaic Power Generation," Energies, MDPI, vol. 15(19), pages 1-30, September.
    19. Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
    20. Jizhong Xue & Zaohui Kang & Chun Sing Lai & Yu Wang & Fangyuan Xu & Haoliang Yuan, 2023. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1564-:d:1363518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.