IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3457-d1123951.html
   My bibliography  Save this article

Investigation of Optimal Temperature for Thermal Catalytic Conversion of Marine Biomass for Recovery of Higher-Added-Value Energy Products

Author

Listed:
  • Justas Eimontas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Adolfas Jančauskas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Kęstutis Zakarauskas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Nerijus Striūgas

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Lina Vorotinskienė

    (Laboratory of Combustion Processes, Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

Abstract

The eutrophication process, caused by the uncollected seaweed and macroalgae, is a relevant and ongoing ecological issue. In case this biomass is collected from the seashores, it could be used as a potential feedstock for recovery of higher-added-value energy products. This paper aims to investigate the seaweed perspective of uses as a potential feedstock in the slow-pyrolysis process, using microthermal analysis combined with Fourier transform infrared spectrometry and experiments at the laboratory scale at different temperatures with two different types of zeolite catalysts. The primary investigation was performed using a micro-thermal analyser, and the results revealed that seaweed thermally decomposes in two stages, at 250 and 700 °C, while the catalyst slightly decreased the activation energy required for the process, lowering the temperatures of decomposition. Experiments on a laboratory scale showed that the most common compounds in the gaseous phase are C n H m , H 2 , CO, and CO 2 . Nevertheless, the most abundant liquid fraction derivatives are substituted phenolic compounds, pyridine, benzoic acid, naphthalene, d-glucopyranose, and d-allose. Furthermore, the catalyst decreased the amount of higher molecular mass compounds, converting them to toluene (71%), which makes this technology more attractive from the recovery of higher-added-value products point of view.

Suggested Citation

  • Justas Eimontas & Adolfas Jančauskas & Kęstutis Zakarauskas & Nerijus Striūgas & Lina Vorotinskienė, 2023. "Investigation of Optimal Temperature for Thermal Catalytic Conversion of Marine Biomass for Recovery of Higher-Added-Value Energy Products," Energies, MDPI, vol. 16(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3457-:d:1123951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    2. Eimontas, Justas & Yousef, Samy & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Catalytic pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of waste fishing nets over ZSM-5 zeolite catalyst for caprolactam recovery," Renewable Energy, Elsevier, vol. 179(C), pages 1385-1403.
    3. Nawaz, Ahmad & Kumar, Pradeep, 2023. "Thermocatalytic pyrolysis of Sesbania bispinosa biomass over Y-zeolite catalyst towards clean fuel and valuable chemicals," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Józef Ciuła & Iwona Wiewiórska & Marian Banaś & Tadeusz Pająk & Piotr Szewczyk, 2023. "Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy," Energies, MDPI, vol. 16(9), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    2. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    3. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    4. Rocío García-Morato & Silvia Román & Beatriz Ledesma & Charles Coronella, 2023. "Co-Hydrothermal Carbonization of Grass and Olive Stone as a Means to Lower Water Input to HTC," Resources, MDPI, vol. 12(7), pages 1-14, July.
    5. Saaida Khlifi & Marzouk Lajili & Saoussen Belghith & Salah Mezlini & Fouzi Tabet & Mejdi Jeguirim, 2020. "Briquettes Production from Olive Mill Waste under Optimal Temperature and Pressure Conditions: Physico-Chemical and Mechanical Characterizations," Energies, MDPI, vol. 13(5), pages 1-14, March.
    6. Zhang, Ziyin & Pang, Shusheng, 2019. "Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier," Renewable Energy, Elsevier, vol. 132(C), pages 416-424.
    7. Chen, Yunan & Yi, Lei & Yin, Jiarong & Jin, Hui & Guo, Liejin, 2022. "Sewage sludge gasification in supercritical water with fluidized bed reactor: Reaction and product characteristics," Energy, Elsevier, vol. 239(PB).
    8. Chen, Fuxin & Hou, Binbin & Chen, Suying & Zhang, Huikuan & Gong, Pin & Zhou, Anning, 2017. "Biochemicals distribution and the collaborative pyrolysis study from three main components of Helianthus annuus stems based on PY-GC/MS," Renewable Energy, Elsevier, vol. 114(PB), pages 960-967.
    9. Gupta, Ankita & Mahajani, Sanjay, 2020. "Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling," Energy, Elsevier, vol. 208(C).
    10. Yusuf, Abdulfatah Abdu & Inambao, Freddie L., 2020. "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
    12. Chouchene, Ajmia & Jeguirim, Mejdi & Khiari, Basma & Zagrouba, Fathi & Trouvé, Gwénaëlle, 2010. "Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 271-277.
    13. Furtado Júnior, Juarez Corrêa & Palacio, José Carlos Escobar & Leme, Rafael Coradi & Lora, Electo Eduardo Silva & da Costa, José Eduardo Loureiro & Reyes, Arnaldo Martín Martínez & del Olmo, Oscar Alm, 2020. "Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry," Applied Energy, Elsevier, vol. 259(C).
    14. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    15. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    16. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    17. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    18. Qing Li & Youmin Jiang & Changpeng Ren & Qiushi Jiang & Jiali Feng & Minmin Wang & Zixuan Gao & Wen Cao, 2022. "Effects of Different Hydrolysis Methods on the Hydrolysate Characteristics and Photo-Fermentative Hydrogen Production Performance of Corn and Sorghum Straw," Energies, MDPI, vol. 16(1), pages 1-13, December.
    19. He, Pi-wen & Luo, Si-yi & Cheng, Gong & Xiao, Bo & Cai, Lei & Wang, Jin-bo, 2012. "Gasification of biomass char with air-steam in a cyclone furnace," Renewable Energy, Elsevier, vol. 37(1), pages 398-402.
    20. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3457-:d:1123951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.