IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2592-d1092402.html
   My bibliography  Save this article

Demonstration of Pronghorn’s Subchannel Code Modeling of Liquid-Metal Reactors and Validation in Normal Operation Conditions and Blockage Scenarios

Author

Listed:
  • Vasileios Kyriakopoulos

    (Idaho National Laboratory, Idaho Falls, ID 83415, USA
    These authors contributed equally to this work.)

  • Mauricio E. Tano

    (Idaho National Laboratory, Idaho Falls, ID 83415, USA
    These authors contributed equally to this work.)

  • Aydin Karahan

    (Argonne National Laboratory, Lemont, IL 60439, USA)

Abstract

Pronghorn-SC is a subchannel code within the Multiphysics Object-Oriented Simulation Environment (MOOSE). Initially designed to simulate flows in water-cooled, square lattice, subchannel assemblies, Pronghorn-SC has been expanded to simulate liquid-metal-cooled flows in triangular lattices, hexagonal subchannel assemblies. For this purpose, the algorithm of Pronghorn-SC was adapted to solve the subchannel equations as they are applicable to a hexagonal wire-wrapped sodium-cooled fast reactor. Cheng–Todreas models for pressure drop and cross-flow models were adopted and a coolant heat conduction term was added. To solve these equations, an improved implicit algorithm was developed robust enough to deal with the numerical issues, associated with low flow and recirculation phenomena. To confirm the prediction capability of Pronghorn-SC, calculations and comparisons with available experimental data of 19- and 37-pin assemblies were performed, as well as other subchannel codes. Finally, a flow blockage modeling feature was added. This capability was validated for both water-cooled square sub-assemblies and sodium-cooled hexagonal sub-assemblies, using experimental data of partially and fully blocked cases.

Suggested Citation

  • Vasileios Kyriakopoulos & Mauricio E. Tano & Aydin Karahan, 2023. "Demonstration of Pronghorn’s Subchannel Code Modeling of Liquid-Metal Reactors and Validation in Normal Operation Conditions and Blockage Scenarios," Energies, MDPI, vol. 16(6), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2592-:d:1092402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasileios Kyriakopoulos & Mauricio E. Tano & Jean C. Ragusa, 2022. "Development of a Single-Phase, Transient, Subchannel Code, within the MOOSE Multi-Physics Computational Framework," Energies, MDPI, vol. 15(11), pages 1-27, May.
    2. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    2. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    3. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.
    5. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    6. Choong-koo Chang & Harold Chisano Oyando, 2022. "Review of the Requirements for Load Following of Small Modular Reactors," Energies, MDPI, vol. 15(17), pages 1-12, August.
    7. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    8. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
    9. Qiuwen Wang & Hu Zhang & Puxin Zhu, 2023. "Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    10. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    11. Yao Tong & Duo Zhang & Zhijiang Shao & Xiaojin Huang, 2023. "Global Model Calibration of High-Temperature Gas-Cooled Reactor Pebble-Bed Module Using an Adaptive Experimental Design," Energies, MDPI, vol. 16(12), pages 1-25, June.
    12. Marek Jaszczur & Michał Dudek & Zygmunt Kolenda, 2020. "Thermodynamic Analysis of Advanced Gas Turbine Combined Cycle Integration with a High-Temperature Nuclear Reactor and Cogeneration Unit," Energies, MDPI, vol. 13(2), pages 1-16, January.
    13. Run Luo & Chunyu Liu & Rafael Macián-Juan, 2021. "Investigation of Control Characteristics for a Molten Salt Reactor Plant under Normal and Accident Conditions," Energies, MDPI, vol. 14(17), pages 1-23, August.
    14. Locatelli, Giorgio & Boarin, Sara & Fiordaliso, Andrea & Ricotti, Marco E., 2018. "Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis," Energy, Elsevier, vol. 148(C), pages 494-505.
    15. Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
    16. Vasileios Kyriakopoulos & Mauricio E. Tano & Jean C. Ragusa, 2022. "Development of a Single-Phase, Transient, Subchannel Code, within the MOOSE Multi-Physics Computational Framework," Energies, MDPI, vol. 15(11), pages 1-27, May.
    17. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2592-:d:1092402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.