IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2054-d1074021.html
   My bibliography  Save this article

Non-Hardware-Based Non-Technical Losses Detection Methods: A Review

Author

Listed:
  • Fernando G. K. Guarda

    (Santa Maria Technical and Industrial School, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Bruno K. Hammerschmitt

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Marcelo B. Capeletti

    (Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Nelson K. Neto

    (Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Brazil)

  • Laura L. C. dos Santos

    (Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Brazil)

  • Lucio R. Prade

    (Polytechnic School, University of Vale dos Sinos, São Leopoldo 93022-750, Brazil)

  • Alzenira Abaide

    (Santa Maria Technical and Industrial School, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

Abstract

Non-Technical Losses (NTL) represent a serious concern for electric companies. These losses are responsible for revenue losses, as well as reduced system reliability. Part of the revenue loss is charged to legal consumers, thus, causing social imbalance. NTL methods have been developed in order to reduce the impact in physical distribution systems and legal consumers. These methods can be classified as hardware-based and non-hardware-based. Hardware-based methods need an entirely new system infrastructure to be implemented, resulting in high investment and increased cost for energy companies, thus hampering implementation in poorer nations. With this in mind, this paper performs a review of non-hardware-based NTL detection methods. These methods use distribution systems and consumers’ data to detect abnormal energy consumption. They can be classified as network-based, which use network technical parameters to search for energy losses, data-based methods, which use data science and machine learning, and hybrid methods, which combine both. This paper focuses on reviewing non-hardware-based NTL detection methods, presenting a NTL detection methods overview and a literature search and analysis.

Suggested Citation

  • Fernando G. K. Guarda & Bruno K. Hammerschmitt & Marcelo B. Capeletti & Nelson K. Neto & Laura L. C. dos Santos & Lucio R. Prade & Alzenira Abaide, 2023. "Non-Hardware-Based Non-Technical Losses Detection Methods: A Review," Energies, MDPI, vol. 16(4), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2054-:d:1074021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yurtseven, Çağlar, 2015. "The causes of electricity theft: An econometric analysis of the case of Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 70-78.
    2. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    3. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    3. Jamil, Faisal & Ahmad, Eatzaz, 2019. "Policy considerations for limiting electricity theft in the developing countries," Energy Policy, Elsevier, vol. 129(C), pages 452-458.
    4. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    5. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    6. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    7. Dongjun Kim & Jinsung Yun & Kijung Kim & Seungil Lee, 2021. "A Comparative Study of the Robustness and Resilience of Retail Areas in Seoul, Korea before and after the COVID-19 Outbreak, Using Big Data," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    8. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    9. Martin Besfamille & Nicolás Figueroa & Léon Guzmán, 2023. "Ramsey Pricing Revisited: Natural Monopoly Regulation with Evaders," CESifo Working Paper Series 10732, CESifo.
    10. Konstantinos Makris & Ilia Vonta & Alex Karagrigoriou, 2021. "On Similarity Measures for Stochastic and Statistical Modeling," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    11. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    12. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    13. Sirin, Selahattin Murat & Uz, Dilek & Sevindik, Irem, 2022. "How do variable renewable energy technologies affect firm-level day-ahead output decisions: Evidence from the Turkish wholesale electricity market," Energy Economics, Elsevier, vol. 112(C).
    14. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. María Del Carmen Ruiz-Abellón & Antonio Gabaldón & Antonio Guillamón, 2016. "Dependency-Aware Clustering of Time Series and Its Application on Energy Markets," Energies, MDPI, vol. 9(10), pages 1-22, October.
    16. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    17. Tugba Somuncu & Christopher Hannum, 2018. "The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft," Energies, MDPI, vol. 11(12), pages 1-28, December.
    18. Małgorzata Poniatowska-Jaksch, 2021. "Energy Consumption in Central and Eastern Europe (CEE) Households in the Platform Economics," Energies, MDPI, vol. 14(4), pages 1-22, February.
    19. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    20. Çetinkaya, Murat & Başaran, Alparslan A. & Bağdadioğlu, Necmiddin, 2015. "Electricity reform, tariff and household elasticity in Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 79-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2054-:d:1074021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.