IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1243-d1045096.html
   My bibliography  Save this article

A Comparative Analysis of Hyperparameter Tuned Stochastic Short Term Load Forecasting for Power System Operator

Author

Listed:
  • B. V. Surya Vardhan

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Mohan Khedkar

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Ishan Srivastava

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Prajwal Thakre

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Neeraj Dhanraj Bokde

    (Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus, Denmark
    iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Foulum, 8830 Tjele, Denmark)

Abstract

Intermittency in the grid creates operational issues for power system operators (PSO). One such intermittent parameter is load. Accurate prediction of the load is the key to proper planning of the power system. This paper uses regression analyses for short-term load forecasting (STLF). Assumed load data are first analyzed and outliers are identified and treated. The cleaned data are fed to regression methods involving Linear Regression, Decision Trees (DT), Support Vector Machine (SVM), Ensemble, Gaussian Process Regression (GPR), and Neural Networks. The best method is identified based on statistical analyses using parameters such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Square Error (MSE), R 2 , and Prediction Speed. The best method is further optimized with the objective of reducing MSE by tuning hyperparameters using Bayesian Optimization, Grid Search, and Random Search. The algorithms are implemented in Python and Matlab Platforms. It is observed that the best methods obtained for regression analysis and hyperparameter tuning for an assumed data set are Decision Trees and Grid Search, respectively. It is also observed that, due to hyperparameter tuning, the MSE is reduced by 12.98%.

Suggested Citation

  • B. V. Surya Vardhan & Mohan Khedkar & Ishan Srivastava & Prajwal Thakre & Neeraj Dhanraj Bokde, 2023. "A Comparative Analysis of Hyperparameter Tuned Stochastic Short Term Load Forecasting for Power System Operator," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1243-:d:1045096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishan Srivastava & Sunil Bhat & B. V. Surya Vardhan & Neeraj Dhanraj Bokde, 2022. "Fault Detection, Isolation and Service Restoration in Modern Power Distribution Systems: A Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
    2. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    3. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamás Storcz & Géza Várady & István Kistelegdi & Zsolt Ercsey, 2023. "Regression Models and Shape Descriptors for Building Energy Demand and Comfort Estimation," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishan Srivastava & Sunil Bhat & B. V. Surya Vardhan & Neeraj Dhanraj Bokde, 2022. "Fault Detection, Isolation and Service Restoration in Modern Power Distribution Systems: A Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
    2. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    4. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    5. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    6. Vitor Monteiro & Joao L. Afonso, 2023. "The Future of Electrical Power Grids: A Direction Rooted in Power Electronics," Energies, MDPI, vol. 16(13), pages 1-10, June.
    7. Sara Ayub & Shahrin Md Ayob & Chee Wei Tan & Saad M. Arif & Muhammad Taimoor & Lubna Aziz & Abba Lawan Bukar & Qasem Al-Tashi & Razman Ayop, 2023. "Multi-Criteria Energy Management with Preference Induced Load Scheduling Using Grey Wolf Optimizer," Sustainability, MDPI, vol. 15(2), pages 1-38, January.
    8. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    9. Sadeghi, M. & Kalantar, M., 2023. "Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus," Applied Energy, Elsevier, vol. 350(C).
    10. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    11. S. Sofana Reka & Prakash Venugopal & V. Ravi & Tomislav Dragicevic, 2023. "Privacy-Based Demand Response Modeling for Residential Consumers Using Machine Learning with a Cloud–Fog-Based Smart Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    13. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    14. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    16. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    17. Maja Božičević Vrhovčak & Bruno Malbašić, 2023. "Unlocking the Value of Aggregated Demand Response: A Survey of European Electricity Markets," Energies, MDPI, vol. 16(17), pages 1-13, September.
    18. Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.
    19. Luciana Marques & Wadaed Uturbey & Miguel Heleno, 2021. "An Integer Non-Cooperative Game Approach for the Transactive Control of Thermal Appliances in Energy Communities," Energies, MDPI, vol. 14(21), pages 1-22, October.
    20. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1243-:d:1045096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.