IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7399-d1272808.html
   My bibliography  Save this article

Long-Term Hydropower Planning for Ethiopia: A Rolling Horizon Stochastic Programming Approach with Uncertain Inflow

Author

Listed:
  • Firehiwot Girma Dires

    (School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa 385, Ethiopia)

  • Mikael Amelin

    (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden)

  • Getachew Bekele

    (School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa 385, Ethiopia)

Abstract

All long-term hydropower planning problems require a forecast of the inflow during the planning period. However, it is challenging to accurately forecast inflows for a year or more. Therefore, it is common to use stochastic models considering the uncertainties of the inflow. This paper compares deterministic and stochastic models in a weekly rolling horizon framework considering inflow uncertainty. The stochastic model is tested in both a risk-neutral and a risk-averse version. The rolling horizon framework helps make periodic decisions and update the information in each rolling week, which minimizes the errors in prolonged forecasts. The models aim to utilize the water stored in the rainy season throughout the year with minimum load shedding while storing as much water as possible at the end of the planning horizon. The Conditional Value at Risk ( C V a R ) risk measure is used to develop the risk-averse stochastic model. Three different risk measures are investigated to choose the risk measure that yields the best outcome in the risk-averse problem, and the two best measures are compared to a deterministic and risk-neutral model in a weekly rolling horizon framework. The results show that the risk-neutral and best risk-averse models perform almost equally and are better than the deterministic model. Hence, using a stochastic model would be an improvement to the actual planning performed in the Ethiopian and other African countries’ power systems.

Suggested Citation

  • Firehiwot Girma Dires & Mikael Amelin & Getachew Bekele, 2023. "Long-Term Hydropower Planning for Ethiopia: A Rolling Horizon Stochastic Programming Approach with Uncertain Inflow," Energies, MDPI, vol. 16(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7399-:d:1272808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Séguin, Sara & Fleten, Stein-Erik & Côté, Pascal & Pichler, Alois & Audet, Charles, 2017. "Stochastic short-term hydropower planning with inflow scenario trees," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1156-1168.
    2. Rodilla, Pablo & García-González, Javier & Baíllo, Álvaro & Cerisola, Santiago & Batlle, Carlos, 2015. "Hydro resource management, risk aversion and equilibrium in an incomplete electricity market setting," Energy Economics, Elsevier, vol. 51(C), pages 365-382.
    3. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    4. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    5. Michal Kaut, 2021. "Scenario generation by selection from historical data," Computational Management Science, Springer, vol. 18(3), pages 411-429, July.
    6. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2019. "A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems," Energy, Elsevier, vol. 184(C), pages 73-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    4. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    5. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    6. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    7. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    8. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    9. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    10. Ann-Kathrin Klaas & Hans-Peter Beck, 2021. "A MILP Model for Revenue Optimization of a Compressed Air Energy Storage Plant with Electrolysis," Energies, MDPI, vol. 14(20), pages 1-21, October.
    11. Löschenbrand, Markus, 2020. "Finding multiple Nash equilibria via machine learning-supported Gröbner bases," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1178-1189.
    12. Daniel F. Salas & Warren B. Powell, 2018. "Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 106-123, February.
    13. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    14. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    15. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
    16. Löhndorf, Nils & Wozabal, David, 2021. "Gas storage valuation in incomplete markets," European Journal of Operational Research, Elsevier, vol. 288(1), pages 318-330.
    17. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
    18. Bertsch, Valentin & Devine, Mel, 2019. "The Role of Demand Response in Mitigating Market Power — A Quantitative Analysis Using a Stochastic Market Equilibrium Model," Papers WP635, Economic and Social Research Institute (ESRI).
    19. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    20. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7399-:d:1272808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.