IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7183-d1264395.html
   My bibliography  Save this article

Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures

Author

Listed:
  • Beata Brzychczyk

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Jan Giełżecki

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Krzysztof Kijanowski

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Tomasz Hebda

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Filip Rzepka

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

Abstract

Automation of the lighting system for phototrophiccultures in photobioreactors is a process of automation and control of lighting inside. Photosynthetic microorganisms, in order to develop and grow, require a species-specific type of visible light radiation. The automation of the lighting system was based on the industrial PLC Modicon TM221C24T controller according to the submitted and received patent No. 242154. The system was integrated with a quantum sensor, which allows for setting the colour of light and controlling the intensity and exposure time based on protocols set by the operator. The data obtained from the PAR photosynthetically active radiation sensor make it possible to adjust the distribution of light to the actual needs of the culture’s radiant energy. The unit also allows for remote control of multiculture farms. It allows you to simulate sunrise and sunset using the astronomical clock function set for a given species of microalgae. Ultimately, the work was undertaken on the implementation and use of a system for measuring the light spectrum at each point of the bioreactor using a fibre-optic immersion probe.

Suggested Citation

  • Beata Brzychczyk & Jan Giełżecki & Krzysztof Kijanowski & Tomasz Hebda & Filip Rzepka, 2023. "Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7183-:d:1264395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michelle Dias Hornes da Rosa & Cristina Jansen Alves & Felipe Nardo dos Santos & Alexander Ossanes de Souza & Elessandra da Rosa Zavareze & Ernani Pinto & Miguel Daniel Noseda & Daniela Ramos & Cláudi, 2023. "Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review," Energies, MDPI, vol. 16(4), pages 1-14, February.
    2. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Singh, S.P. & Singh, Priyanka, 2015. "Effect of temperature and light on the growth of algae species: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 431-444.
    4. Agata Jabłońska-Trypuć & Elżbieta Wołejko & Mahmudova Dildora Ernazarovna & Aleksandra Głowacka & Gabriela Sokołowska & Urszula Wydro, 2023. "Using Algae for Biofuel Production: A Review," Energies, MDPI, vol. 16(4), pages 1-23, February.
    5. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    6. Zhang, Yuejin & Bao, Keting & Wang, Juan & Zhao, Yongjun & Hu, Changwei, 2017. "Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies," Energy, Elsevier, vol. 130(C), pages 392-401.
    7. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    8. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy & Wojciech Golimowski & Andrzej Kwaśnica & Damian Marcinkowski, 2023. "Indicators of Engine Performance Powered by a Biofuel Blend Produced from Microalgal Biomass: A Step towards the Decarbonization of Transport," Energies, MDPI, vol. 16(14), pages 1-17, July.
    9. Kleiman, Rachel M. & Characklis, Gregory W. & Kern, Jordan D. & Gerlach, Robin, 2021. "Characterizing weather-related biophysical and financial risks in algal biofuel production," Applied Energy, Elsevier, vol. 294(C).
    10. Kateřina Sukačová & Pavel Lošák & Vladimír Brummer & Vítězslav Máša & Daniel Vícha & Tomáš Zavřel, 2021. "Perspective Design of Algae Photobioreactor for Greenhouses—A Comparative Study," Energies, MDPI, vol. 14(5), pages 1-17, March.
    11. Daniel T. Mohler & Michael H. Wilson & Zhen Fan & John G. Groppo & Mark Crocker, 2019. "Beneficial Reuse of Industrial CO 2 Emissions Using a Microalgae Photobioreactor: Waste Heat Utilization Assessment," Energies, MDPI, vol. 12(13), pages 1-18, July.
    12. Motasem Y. D. Alazaiza & Ahmed Albahnasawi & Tahra Al Maskari & Mohammed Shadi S. Abujazar & Mohammed J. K. Bashir & Dia Eddin Nassani & Salem S. Abu Amr, 2023. "Biofuel Production Using Cultivated Algae: Technologies, Economics, and Its Environmental Impacts," Energies, MDPI, vol. 16(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Motasem Y. D. Alazaiza & Ahmed Albahnasawi & Tahra Al Maskari & Mohammed Shadi S. Abujazar & Mohammed J. K. Bashir & Dia Eddin Nassani & Salem S. Abu Amr, 2023. "Biofuel Production Using Cultivated Algae: Technologies, Economics, and Its Environmental Impacts," Energies, MDPI, vol. 16(3), pages 1-27, January.
    3. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    4. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    5. Shubhanvit Mishra & Yi-Ju Liu & Chi-Shuo Chen & Da-Jeng Yao, 2021. "An Easily Accessible Microfluidic Chip for High-Throughput Microalgae Screening for Biofuel Production," Energies, MDPI, vol. 14(7), pages 1-10, March.
    6. Shariff, Shoaib & Chakraborty, Saikat, 2017. "Two-scale model for quantifying the effects of laminar and turbulent mixing on algal growth in loop photobioreactors," Applied Energy, Elsevier, vol. 185(P2), pages 973-984.
    7. Rooma Waqar & Sultana Rahman & Javed Iqbal & Muhammad Kaleem & Lubna Anjum Minhas & Nabi Ullah & Farzana Kausar & Wadie Chalgham & Fahad A. Al-Misned & Hamed A. El-Serehy & Abdul Samad Mumtaz, 2023. "Biosorption Potential of Desmodesmus sp. for the Sequestration of Cadmium and Lead from Contaminated Water," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    8. Gao, Shumei & Hu, Changwei & Sun, Shiqing & Xu, Jie & Zhao, Yongjun & Zhang, Hui, 2018. "Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration," Energy, Elsevier, vol. 165(PB), pages 360-369.
    9. José C. M. Pires & Ana L. Gonçalves, 2022. "Microalgae Cultures: Environmental Tool and Bioenergy," Energies, MDPI, vol. 15(16), pages 1-4, August.
    10. Kleiman, Rachel M. & Characklis, Gregory W. & Kern, Jordan D., 2022. "Managing weather- and market price-related financial risks in algal biofuel production," Renewable Energy, Elsevier, vol. 200(C), pages 111-124.
    11. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    13. Najeeha Mohd Apandi & Mimi Suliza Muhamad & Radin Maya Saphira Radin Mohamed & Norshuhaila Mohamed Sunar & Adel Al-Gheethi & Paran Gani & Fahmi A. Rahman, 2021. "Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    14. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    15. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. El Shenawy, E.A. & Elkelawy, Medhat & Bastawissi, Hagar Alm-Eldin & Taha, Mohammed & Panchal, Hitesh & Sadasivuni, Kishor kumar & Thakar, Nishant, 2020. "Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor," Renewable Energy, Elsevier, vol. 148(C), pages 807-815.
    17. Vindel, José M. & Trincado, Estrella, 2021. "Viability assessment of algal wastewater treatment projects under outdoor conditions based on algal productivity and nutrient removal rate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    20. Jingjing Wu & Shane W. Rogers & Rebekah Schaummann & Nichole N. Price, 2023. "A Comparison of Multiple Macroalgae Cultivation Systems and End-Use Strategies of Saccharina latissima and Gracilaria tikvahiae Based on Techno-Economic Analysis and Life Cycle Assessment," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7183-:d:1264395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.