IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6493-d1235959.html
   My bibliography  Save this article

Operation Mode and Energy Consumption Analysis of a New Energy Tower and Ground Source-Coupled Heat Pump System

Author

Listed:
  • Yao Zhang

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Ronghua Wu

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Hao Yu

    (Qingdao KC Blue New Energy Co., Ltd., Qingdao 266300, China)

  • Yujuan Yang

    (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

  • Hao Zhan

    (Qingdao KC Blue New Energy Co., Ltd., Qingdao 266300, China)

Abstract

In order to solve the problems of performance degradation in energy tower heat pump (ETHP) systems under low temperature conditions and soil heat imbalances in ground source heat pump (GSHP) systems in cold regions, a new coupled system of ETHP and GSHP systems (the ET–GSHP system) and its operating mode were proposed. The mathematical model of the system was constructed along with the system’s form and operation scheme. The COP (coefficient of performance) and total energy consumption of the coupled system were then simulated and studied under a number of common operating situations. The heating season is divided into four periods based on varying outdoor ambient temperatures: the first period operates in series mode and has an average outdoor temperature of 2.38 °C; the second period operates in parallel mode and has an average outdoor temperature of −8.56 °C; the third period uses soil source heat pumps to operate separately; and the fourth period operates in series mode and has an average outdoor temperature of −11.32 °C. Operation of the coupled system in four periods was simulated and analyzed, and the operational efficiency and energy saving of the system were analyzed using an actual commercial building in a cold region as an example. The results demonstrate that the ET–GSHP system’s overall energy consumption during the heating period is reduced by 4.34% when compared to the traditional GSHP systems; the system’s COP can maintain a high level throughout the heating period, with an average COP of 3.315; and the soil temperature at the conclusion of the heating period is 25 °C, which is 8.89 °C higher than that of the traditional GSHP system, providing a guarantee of summer heat return. The new ET–GSHP system significantly boosts the efficiency of the system’s operation, achieves effective coupling between various heat sources through multi-stage control, and offers improved energy-saving advantages.

Suggested Citation

  • Yao Zhang & Ronghua Wu & Hao Yu & Yujuan Yang & Hao Zhan, 2023. "Operation Mode and Energy Consumption Analysis of a New Energy Tower and Ground Source-Coupled Heat Pump System," Energies, MDPI, vol. 16(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6493-:d:1235959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    2. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    3. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    4. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    5. You, Tian & Wang, Fang, 2023. "Green ground source heat pump using various low-global-warming-potential refrigerants: Thermal imbalance and long-term performance," Renewable Energy, Elsevier, vol. 210(C), pages 159-173.
    6. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    7. Xiaohang Shen & Nianping Li & Yongga A, 2021. "Simulation Research on the Heating Performance of the Combined System of Solar Energy and Heat-Source Tower Heat Pump in a Hot Summer and Cold Winter Area," Energies, MDPI, vol. 14(7), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    2. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    3. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    4. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    5. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    6. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    7. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    8. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    9. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    11. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    12. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    13. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    15. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    16. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    17. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    18. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    19. Zalengera, Collen & Blanchard, Richard E. & Eames, Philip C. & Juma, Alnord M. & Chitawo, Maxon L. & Gondwe, Kondwani T., 2014. "Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 335-347.
    20. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6493-:d:1235959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.