IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6369-d1231625.html
   My bibliography  Save this article

Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles

Author

Listed:
  • Triluck Kusalaphirom

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Thaned Satiennam

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Wichuda Satiennam

    (Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

Currently, studies regarding the factors influencing the real-world electricity consumption of electric motorcycles are lacking. The objective of this study was to examine the factors influencing the real-world electricity consumption of electric motorcycles when driving along an uncongested road network. This study developed an onboard measurement device to collect on-road data, including instant speed data and electricity consumption, from the test electric motorcycle while it was driving on a real-world road. Overall, 105 participants (n = 105) drove the test motorcycle along the uncongested urban road network. Multiple linear regression analysis was applied to explore the effect of influencing variables on the electricity consumption of electric motorcycles. The analysis results revealed that the rider’s weight and average running speed positively influenced electricity consumption, whereas decelerating time negatively influenced electricity consumption. Noticeably, the rider’s weight affected electricity consumption more than other factors. The lightweighting of electric motorcycles was mainly recommended to lower electricity consumption. Subsequently, CO 2 emissions from electricity generation could be reduced.

Suggested Citation

  • Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam, 2023. "Factors Influencing the Real-World Electricity Consumption of Electric Motorcycles," Energies, MDPI, vol. 16(17), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6369-:d:1231625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    2. Farzaneh, Alireza & Farjah, Ebrahim, 2018. "Analysis of Road Curvature’s Effects on Electric Motorcycle Energy Consumption," Energy, Elsevier, vol. 151(C), pages 160-166.
    3. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    4. Le-Trong Hieu & Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "An Investigation on the Effects of Input Parameters on the Dynamic and Electric Consumption of Electric Motorcycles," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    2. Polychronis Spanoudakis & Gerasimos Moschopoulos & Theodoros Stefanoulis & Nikolaos Sarantinoudis & Eftichios Papadokokolakis & Ioannis Ioannou & Savvas Piperidis & Lefteris Doitsidis & Nikolaos C. Ts, 2020. "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    3. Hossain, M.S. & Fang, Yan Ru & Ma, Teng & Huang, Chen & Peng, Wei & Urpelainen, Johannes & Hebbale, Chetan & Dai, Hancheng, 2023. "Narrowing fossil fuel consumption in the Indian road transport sector towards reaching carbon neutrality," Energy Policy, Elsevier, vol. 172(C).
    4. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    5. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    6. Ioannou, Petros & Giuliano, Genevieve & Dessouky, Maged & Chen, Pengfei & Dexter, Sue, 2020. "Freight Load Balancing and Efficiencies in Alternative Fuel Freight Modes," Institute of Transportation Studies, Working Paper Series qt3ns4b894, Institute of Transportation Studies, UC Davis.
    7. Scarinci, Riccardo & Zanarini, Alessandro & Bierlaire, Michel, 2019. "Electrification of urban mobility: The case of catenary-free buses," Transport Policy, Elsevier, vol. 80(C), pages 39-48.
    8. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    9. Graba, M. & Mamala, J. & Bieniek, A. & Sroka, Z., 2021. "Impact of the acceleration intensity of a passenger car in a road test on energy consumption," Energy, Elsevier, vol. 226(C).
    10. Md Junaed Al Hossain & Md. Zakir Hasan & Md Hasanuzzaman & Md. Ziaur Rahman Khan & Mohammad Ahsan Habib, 2022. "Affordable Electric Three-Wheeler in Bangladesh: Prospects, Challenges, and Sustainable Solutions," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    11. Kumar, M. Satyendra & Revankar, Shripad T., 2017. "Development scheme and key technology of an electric vehicle: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1266-1285.
    12. Hossain, MD Shouquat & Fang, Yan Ru & Ma, Teng & Huang, Chen & Dai, Hancheng, 2023. "The role of electric vehicles in decarbonizing India's road passenger toward carbon neutrality and clean air: A state-level analysis," Energy, Elsevier, vol. 273(C).
    13. Shoki Kosai & Sazalina Zakaria & Hang Seng Che & Md Hasanuzzaman & Nasrudin Abd Rahim & Chiakwang Tan & Radin Diana R. Ahmad & Ahmad Rosly Abbas & Katsuyuki Nakano & Eiji Yamasue & Wei Kian Woon & Amm, 2022. "Estimation of Greenhouse Gas Emissions of Petrol, Biodiesel and Battery Electric Vehicles in Malaysia Based on Life Cycle Approach," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    14. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. De Gennaro, Michele & Paffumi, Elena & Scholz, Harald & Martini, Giorgio, 2014. "GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid," Applied Energy, Elsevier, vol. 124(C), pages 94-116.
    16. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    17. Gilmore, Elisabeth A. & Patwardhan, Anand, 2016. "Passenger vehicles that minimize the costs of ownership and environmental damages in the Indian market," Applied Energy, Elsevier, vol. 184(C), pages 863-872.
    18. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
    19. Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
    20. Ioannou, Petros & Chen, Pengfei, 2023. "Centrally Coordinated Schedules and Routes of Airport Shuttles with LAX Terminals as Application Area," Institute of Transportation Studies, Working Paper Series qt6gg7r6c5, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6369-:d:1231625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.