IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5938-d1215242.html
   My bibliography  Save this article

Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems

Author

Listed:
  • Jie Zhu

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Buxiang Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Yiwei Qiu

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Tianlei Zang

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Yi Zhou

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Shi Chen

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

  • Ningyi Dai

    (State Key Laboratory of Internet of Things for Smart City, University of Macau, Macao 999078, China)

  • Huan Luo

    (College of Electrical Engineering, Sichuan University, Chengdu 610025, China)

Abstract

Constructing a renewable energy-based power system has become an important development path for the power industry’s low-carbon transformation. However, as the proportion of renewable energy generation (REG) increases, the power grid gradually changes to uncertainty. Technologies to address this issue have been introduced. However, the majority of existing reviews focus on specific uncertainty modeling approaches and applications, lacking the consideration of temporal and spatial interdependence. Therefore, this paper provides a comprehensive review of the uncertainty modeling of temporal and spatial interdependence. It includes the discrete and continuous stochastic process-based methods to address temporal interdependence, the correlation coefficient and copula functions in modeling spatial interdependence, and the Itô process and random fields theory to describe temporal and spatial interdependence. Finally, their applications in power system stability, control, and economic scheduling are summarized.

Suggested Citation

  • Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5938-:d:1215242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Mari & Emiliano Mari, 2021. "Gaussian clustering and jump-diffusion models of electricity prices: a deep learning analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1039-1062, December.
    2. Xiong, Heng & Mamon, Rogemar, 2019. "A higher-order Markov chain-modulated model for electricity spot-price dynamics," Applied Energy, Elsevier, vol. 233, pages 495-515.
    3. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    4. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    5. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    6. Verdejo, Humberto & Awerkin, Almendra & Saavedra, Eugenio & Kliemann, Wolfgang & Vargas, Luis, 2016. "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, Elsevier, vol. 173(C), pages 283-295.
    7. Li, Shoujun & Ma, Xiaoping & Yang, Chunyu, 2018. "A combined thermal power plant investment decision-making model based on intelligent fuzzy grey model and ito stochastic process and its application," Energy, Elsevier, vol. 159(C), pages 1102-1117.
    8. Arrieta-Prieto, Mario & Schell, Kristen R., 2022. "Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model," International Journal of Forecasting, Elsevier, vol. 38(1), pages 300-320.
    9. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    11. Qingyou Yan & Chao Qin & Mingjian Nie & Le Yang, 2018. "Forecasting the Electricity Demand and Market Shares in Retail Electricity Market Based on System Dynamics and Markov Chain," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, February.
    12. Hasan, Kazi Nazmul & Preece, Robin & Milanović, Jovica V., 2019. "Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 168-180.
    13. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    14. Nan Yang & Yu Huang & Dengxu Hou & Songkai Liu & Di Ye & Bangtian Dong & Youping Fan, 2019. "Adaptive Nonparametric Kernel Density Estimation Approach for Joint Probability Density Function Modeling of Multiple Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    15. Weisi Deng & Buhan Zhang & Hongfa Ding & Hang Li, 2017. "Risk-Based Probabilistic Voltage Stability Assessment in Uncertain Power System," Energies, MDPI, vol. 10(2), pages 1-19, February.
    16. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    17. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    18. Hua Zhou & Huahua Wu & Chengjin Ye & Shijie Xiao & Jun Zhang & Xu He & Bo Wang, 2019. "Integration Capability Evaluation of Wind and Photovoltaic Generation in Power Systems Based on Temporal and Spatial Correlations," Energies, MDPI, vol. 12(1), pages 1-12, January.
    19. Diankai Wang & Inna Gryshova & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Maryna Shcherbata, 2022. "Electricity Price Instability over Time: Time Series Analysis and Forecasting," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    20. Yunsun Kim & Sun-Young Hwang & Jong-Min Kim & Sahm Kim, 2023. "Linear time-varying regression with copula–DCC–asymmetric–GARCH models for volatility: the co-movement between industrial electricity demand and financial factors," Applied Economics, Taylor & Francis Journals, vol. 55(3), pages 255-272, January.
    21. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    22. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    23. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    24. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    25. Shin Young Kim & Benedikt Sapotta & Gilsoo Jang & Yong-Heack Kang & Hyun-Goo Kim, 2020. "Prefeasibility Study of Photovoltaic Power Potential Based on a Skew-Normal Distribution," Energies, MDPI, vol. 13(3), pages 1-12, February.
    26. Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Heidari Gandoman, Foad & Nowdeh, Saber Arabi & Shiran, Mohsen Aghazadeh & Hadidian Moghaddam, Mohammad Jafar & Davoodkhani, Iraj Faraji, 2020. "Optimal designing of static var compensator to improve voltage profile of power system using fuzzy logic control," Energy, Elsevier, vol. 192(C).
    27. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    28. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    29. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    30. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    31. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    2. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    4. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    5. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    6. Gabrielli, Paolo & Fürer, Florian & Mavromatidis, Georgios & Mazzotti, Marco, 2019. "Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis," Applied Energy, Elsevier, vol. 238(C), pages 1192-1210.
    7. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    8. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    9. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    10. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    11. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    12. Leprince, Julien & Schledorn, Amos & Guericke, Daniela & Dominkovic, Dominik Franjo & Madsen, Henrik & Zeiler, Wim, 2023. "Can occupant behaviors affect urban energy planning? Distributed stochastic optimization for energy communities," Applied Energy, Elsevier, vol. 348(C).
    13. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    14. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    15. Mohammed Alzubaidi & Kazi N. Hasan & Lasantha Meegahapola & Mir Toufikur Rahman, 2021. "Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.
    16. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    17. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
    19. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    20. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5938-:d:1215242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.