IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5136-d1185963.html
   My bibliography  Save this article

WRF Parameterizations of Short-Term Solar Radiation Forecasts for Cold Fronts in Central and Eastern Europe

Author

Listed:
  • Michał Mierzwiak

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

  • Krzysztof Kroszczyński

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

  • Andrzej Araszkiewicz

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

Abstract

The solar power industry is a rapidly growing sector of renewable energy, and it is crucial that the available energy is accurately forecast. Using numerical weather prediction models, we can forecast the global horizontal irradiance on which the amount of energy produced by photovoltaic systems depends. This study presents the forecast effects for one of the most challenging weather conditions in modelling, occurring in central and eastern Europe. The dates of the synoptic situations were selected from 2021 and 2022. Simulations were carried out for 18 days with a cold front and, in order to verify the model configuration, for 2 days with a warm front, 2 days with an occlusion front and 2 days with a high pressure situation. Overall, 24 forecasts were made for each of the three parameterizations of the Weather Research and Forecasting model. The data were compared with the values measured in situ at the station performing the actinometric measurements belonging to Germany’s National Meteorological Service. This paper presents the spatial distribution of the global horizontal irradiance parameters for several terms to explain the differences between the results of the different simulations.

Suggested Citation

  • Michał Mierzwiak & Krzysztof Kroszczyński & Andrzej Araszkiewicz, 2023. "WRF Parameterizations of Short-Term Solar Radiation Forecasts for Cold Fronts in Central and Eastern Europe," Energies, MDPI, vol. 16(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5136-:d:1185963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zempila, Melina-Maria & Giannaros, Theodore M. & Bais, Alkiviadis & Melas, Dimitris & Kazantzidis, Andreas, 2016. "Evaluation of WRF shortwave radiation parameterizations in predicting Global Horizontal Irradiance in Greece," Renewable Energy, Elsevier, vol. 86(C), pages 831-840.
    2. Schleich, Joachim, 2019. "Energy efficient technology adoption in low-income households in the European Union – What is the evidence?," Energy Policy, Elsevier, vol. 125(C), pages 196-206.
    3. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2022. "Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    2. Jean-Maurice Cadet & Hassan Bencherif & Thierry Portafaix & Kévin Lamy & Katlego Ncongwane & Gerrie J. R. Coetzee & Caradee Y. Wright, 2017. "Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites," IJERPH, MDPI, vol. 14(11), pages 1-15, November.
    3. Petrov, Ivan & Ryan, Lisa, 2021. "The landlord-tenant problem and energy efficiency in the residential rental market," Energy Policy, Elsevier, vol. 157(C).
    4. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    5. Huva, Robert & Verbois, Hadrien & Walsh, Wilfred, 2020. "Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model," Renewable Energy, Elsevier, vol. 147(P1), pages 663-671.
    6. Florian Gaman & Cristina Iacoboaea & Mihaela Aldea & Oana Luca & Adrian Andrei Stănescu & Carmen Mihaela Boteanu, 2022. "Energy Transition in Marginalized Urban Areas: The Case of Romania," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    7. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    8. Julián Urrego-Ortiz & J. Alejandro Martínez & Paola A. Arias & Álvaro Jaramillo-Duque, 2019. "Assessment and Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia," Energies, MDPI, vol. 12(22), pages 1-29, November.
    9. Michał Mierzwiak & Krzysztof Kroszczyński & Andrzej Araszkiewicz, 2022. "On Solar Radiation Prediction for the East–Central European Region," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Rosario Miceli & Claudio Nevoloso & Francesco Maria Raimondi & Marco Trapanese, 2022. "An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion," Energies, MDPI, vol. 15(7), pages 1-21, March.
    11. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).
    12. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2023. "Making the factors underlying the implicit discount rate tangible," Energy Policy, Elsevier, vol. 177(C).
    13. Chersoni, Giulia & DellaValle, Nives & Fontana, Magda, 2022. "Modelling thermal insulation investment choice in the EU via a behaviourally informed agent-based model," Energy Policy, Elsevier, vol. 163(C).
    14. Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
    15. Kaya, O. & Klepacka, A.M. & Florkowski, W.J., 2021. "The role of personal and environmental factors in rural homeowner decision to insulate; an example from Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    17. Izabela Jonek-Kowalska & Sara Rupacz, 2023. "The Innovative Nature of Selected Polish Companies in the Energy Sector Compared to the Use of Renewable Energy Sources from a Financial and an Investor’s Perspective," Resources, MDPI, vol. 12(12), pages 1-19, December.
    18. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    19. Daria Moskwa-Bęczkowska & Andrzej Moskwa, 2022. "Renewable Energy Sources in the Processes of Thermal Modernization of Buildings—Selected Aspects in Poland," Energies, MDPI, vol. 15(13), pages 1-12, June.
    20. Ren, Yi-Shuai & Jiang, Yong & Narayan, Seema & Ma, Chao-Qun & Yang, Xiao-Guang, 2022. "Marketisation and rural energy poverty: Evidence from provincial panel data in China," Energy Economics, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5136-:d:1185963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.