IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3270-d805941.html
   My bibliography  Save this article

The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure

Author

Listed:
  • Dulatbay Yerassyl

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China
    Department of Science, Zhangir Khan West-Kazakhstan Agrarian-Technical University, Uralsk 090009, Kazakhstan)

  • Yu Jin

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China)

  • Sugirbaeva Zhanar

    (Department of Higher Mathematics, L.N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan)

  • Kazambayeva Aigul

    (Department of Science, Zhangir Khan West-Kazakhstan Agrarian-Technical University, Uralsk 090009, Kazakhstan)

  • Yessengaliyeva Saltanat

    (Department of Science, Zhangir Khan West-Kazakhstan Agrarian-Technical University, Uralsk 090009, Kazakhstan)

Abstract

Kazakhstan has large reserves of natural resources, including coal, oil, and natural gas. We hope to replace fossil fuels with renewable sources of energy—particularly renewable natural gas. Thus, Kazakhstan, like other countries, should cut its dependency on coal, oil, and natural gas so as to reach net zero carbon emissions by 2050. This study, given that Kazakhstan is an agricultural country with a large amount of organic matter, analyzes the potential of biogas production as a source of electricity and heat. Manure from livestock and poultry was chosen as a source of organic matter. The climate of Kazakhstan in most of its territory is sharply continental, with large temperature differences, which affect the process of anaerobic digestion. Consequently, the features of biogas production in cold regions were analyzed, and the calculation shows that the equivalent of 27,723,802 kWh of calorific energy could be obtained from the anaerobic digestion of livestock and poultry manure, while the annual energy consumption of Kazakhstan was 9423 billion kWh. Moreover, a policy is suggested to develop biogas production in Kazakhstan based on the agricultural land distribution among farmers.

Suggested Citation

  • Dulatbay Yerassyl & Yu Jin & Sugirbaeva Zhanar & Kazambayeva Aigul & Yessengaliyeva Saltanat, 2022. "The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure," Energies, MDPI, vol. 15(9), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3270-:d:805941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lisandra Rocha-Meneses & Oghenetejiri Frances Otor & Nemailla Bonturi & Kaja Orupõld & Timo Kikas, 2019. "Bioenergy Yields from Sequential Bioethanol and Biomethane Production: An Optimized Process Flow," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    2. Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
    3. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.
    5. Ola Eriksson & Åsa Hadin & Jay Hennessy & Daniel Jonsson, 2016. "Life Cycle Assessment of Horse Manure Treatment," Energies, MDPI, vol. 9(12), pages 1-19, November.
    6. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parralejo Alcobendas Ana Isabel & Royano Barroso Luis & Cabanillas Patilla Juan & González Cortés Jerónimo, 2022. "Biogas from Nitrogen-Rich Biomass as an Alternative to Animal Manure Co-Substrate in Anaerobic Co-Digestion Processes," Energies, MDPI, vol. 15(16), pages 1-13, August.
    2. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    2. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    3. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    4. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    5. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    6. Sonali Goel & Renu Sharma, 2019. "Optimal sizing of a biomass–biogas hybrid system for sustainable power supply to a commercial agricultural farm in northern Odisha, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2297-2319, October.
    7. Junpyo Park & John Anderson & Eric Thompson, 2019. "Land-Use, Crop Choice, and Proximity to Ethanol Plants," Land, MDPI, vol. 8(8), pages 1-14, July.
    8. Renu Sharma & Sonali Goel, 2016. "Stand-alone hybrid energy system for sustainable development in rural India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1601-1614, December.
    9. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    10. Pal, Ankit & Bhattacharjee, Subhadeep, 2020. "Effectuation of biogas based hybrid energy system for cost-effective decentralized application in small rural community," Energy, Elsevier, vol. 203(C).
    11. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    12. Yijia Zhang & Qinqing Bo & Xintian Ma & Yating Du & Xinyi Du & Liyang Xu & Yadong Yang, 2023. "Solid–Liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment," Agriculture, MDPI, vol. 13(12), pages 1-21, December.
    13. Mong, Guo Ren & Chong, Cheng Tung & Ng, Jo-Han & Chong, William Woei Fong & Ong, Hwai Chyuan & Tran, Manh-Vu, 2021. "Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management," Energy, Elsevier, vol. 216(C).
    14. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    15. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    16. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    17. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    18. Bertoni, Danilo & Aletti, Giacomo & Ferrandi, Giulia & Micheletti, Alessandra & Cavicchioli, Daniele & Pretolani, Roberto, 2018. "Farmland Use Transitions After the CAP Greening: a Preliminary Analysis Using Markov Chains Approach," Land Use Policy, Elsevier, vol. 79(C), pages 789-800.
    19. Ozgur Kaya & Wojciech J. Florkowski & Anna Us & Anna M. Klepacka, 2019. "Renewable Energy Perception by Rural Residents of a Peripheral EU Region," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    20. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3270-:d:805941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.