IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2238-d774620.html
   My bibliography  Save this article

Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions

Author

Listed:
  • Artur Jaworski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Maksymilian Mądziel

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Hubert Kuszewski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

Abstract

The COVID pandemic has caused a major exodus of passengers who chose urban and suburban transport. In many countries, especially in the European Union, there is a tendency to choose individual means of transport, causing damage to the environment and contributing significantly to greenhouse gas emissions. One method to promote urban transport is replacing bus fleets with newer ones, thus making public transport more attractive and reducing the emission of harmful exhaust fume components into the atmosphere. The aim of this study was to show a methodology for calculating CO 2 e for bus fleets. When determining CO 2 e, the principal greenhouse gases, such as CO 2 , CH 4 , and N 2 O, are usually considered. However, CO emissions also have indirect effects on climate through enhanced levels of tropospheric O 3 and increased lifetime of CH 4 ; therefore, CO 2 , CH 4 , N 2 O, and CO emissions were determined for CO 2 e emission calculations. Two bus fleet variant scenarios were analysed; the first non-investment variant assumed passenger transport using the old fleet without any P&R parking zones. The second scenario was based on the current state, which includes the purchase of new low-emission buses and the construction of P&R infrastructure. The calculations were performed using the COPERT emission model with real data from 52 buses running on 13 lines. For the analysed case study of the Rzeszow agglomeration and neighbouring communes, implementing the urban and suburban transport modernisation project resulted in a reduction in estimated CO 2 e emissions of about 450 t. The methodology presented, which also considers the impact of CO emissions on the greenhouse effect, is a new element of the study that has not been presented in previous works and may serve as a model for other areas in the field of greenhouse gas emission analyses. The future research scope includes investigation of other fuels and powertrain supplies, such as hydrogen and hybrid vehicles.

Suggested Citation

  • Artur Jaworski & Maksymilian Mądziel & Hubert Kuszewski, 2022. "Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions," Energies, MDPI, vol. 15(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2238-:d:774620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monika Andrych-Zalewska & Zdzislaw Chlopek & Jerzy Merkisz & Jacek Pielecha, 2021. "Research on Exhaust Emissions in Dynamic Operating States of a Combustion Engine in a Real Driving Emissions Test," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    3. Eckhause, Jeremy & Herold, Johannes, 2014. "Using real options to determine optimal funding strategies for CO2 capture, transport and storage projects in the European Union," Energy Policy, Elsevier, vol. 66(C), pages 115-134.
    4. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Giovanni Tesoriere, 2021. "The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Bristow, A. L. & Nellthorp, J., 2000. "Transport project appraisal in the European Union," Transport Policy, Elsevier, vol. 7(1), pages 51-60, January.
    6. Jerzy Niemczyk & Aleksandra Sus & Kamil Borowski & Bartosz Jasiński & Katarzyna Jasińska, 2022. "The Dominant Motives of Mergers and Acquisitions in the Energy Sector in Western Europe from the Perspective of Green Economy," Energies, MDPI, vol. 15(3), pages 1-17, January.
    7. Łukasz Nazarko & Eigirdas Žemaitis & Łukasz Krzysztof Wróblewski & Karel Šuhajda & Magdalena Zajączkowska, 2022. "The Impact of Energy Development of the European Union Euro Area Countries on CO 2 Emissions Level," Energies, MDPI, vol. 15(4), pages 1-12, February.
    8. Maksymilian Mądziel & Tiziana Campisi & Artur Jaworski & Hubert Kuszewski & Paweł Woś, 2021. "Assessing Vehicle Emissions from a Multi-Lane to Turbo Roundabout Conversion Using a Microsimulation Tool," Energies, MDPI, vol. 14(15), pages 1-21, July.
    9. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    2. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    3. Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    4. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    5. Mei Bai & Wen Li & Jin Xu, 2023. "Research on Greenhouse Gas Emission Reduction Methods of SBR and Anoxic Oxic Urban Sewage Treatment System," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
    6. Maksymilian Mądziel & Tiziana Campisi, 2023. "Investigation of Vehicular Pollutant Emissions at 4-Arm Intersections for the Improvement of Integrated Actions in the Sustainable Urban Mobility Plans (SUMPs)," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    7. Weinan He & Lei Duan & Zhuoyuan Zhang & Xu Zhao & Ying Cheng, 2022. "Analysis of the Characteristics of Real-World Emission Factors and VSP Distributions—A Case Study in Beijing," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2022. "Review of Energy Challenges and Horizons of Hydrogen City Buses," Energies, MDPI, vol. 15(19), pages 1-27, September.
    9. Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.
    10. Le Quyen Luu & Eleonora Riva Sanseverino & Maurizio Cellura & Hoai-Nam Nguyen & Hoai-Phuong Tran & Hong Anh Nguyen, 2022. "Life Cycle Energy Consumption and Air Emissions Comparison of Alternative and Conventional Bus Fleets in Vietnam," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammar Šarić & Suada Sulejmanović & Sanjin Albinović & Mirza Pozder & Žanesa Ljevo, 2023. "The Role of Intersection Geometry in Urban Air Pollution Management," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    2. Artur Jaworski & Hubert Kuszewski & Krzysztof Lew & Paweł Wojewoda & Krzysztof Balawender & Paweł Woś & Rafał Longwic & Sergii Boichenko, 2023. "Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests," Energies, MDPI, vol. 16(15), pages 1-20, July.
    3. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    4. Jonas Eliasson & Mattias Lundberg, 2011. "Do Cost--Benefit Analyses Influence Transport Investment Decisions? Experiences from the Swedish Transport Investment Plan 2010--21," Transport Reviews, Taylor & Francis Journals, vol. 32(1), pages 29-48, April.
    5. Holz-Rau, Christian & Scheiner, Joachim, 2011. "Safety and travel time in cost-benefit analysis: A sensitivity analysis for North Rhine-Westphalia," Transport Policy, Elsevier, vol. 18(2), pages 336-346, March.
    6. Maria Börjesson & Jonas Eliasson & Mattias Lundberg, 2014. "Is CBA Ranking of Transport Investments Robust?," Journal of Transport Economics and Policy, University of Bath, vol. 48(2), pages 189-204, May.
    7. Conny Grunicke & Jan Christian Schluter & Jani-Pekka Jokinen, 2020. "Implementation of a cost-benefit analysis of Demand-Responsive Transport with a Multi-Agent Transport Simulation," Papers 2011.12869, arXiv.org, revised Mar 2021.
    8. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.
    9. Damart, Sébastien & Roy, Bernard, 2009. "The uses of cost-benefit analysis in public transportation decision-making in France," Transport Policy, Elsevier, vol. 16(4), pages 200-212, August.
    10. Joanna Toborek-Mazur & Karol Partacz & Marcin Surówka, 2022. "Energy Security as a Premise for Mergers and Acquisitions on the Example of the Multi-Energy Concern PKN Orlen in the Face of the Challenges of the 2020s," Energies, MDPI, vol. 15(14), pages 1-28, July.
    11. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    12. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    13. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    14. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    15. Karolis Andriuškevičius & Dalia Štreimikienė, 2022. "Sustainability Framework for Assessment of Mergers and Acquisitions in Energy Sector," Energies, MDPI, vol. 15(13), pages 1-20, June.
    16. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2015. "Corporate Social Responsibility: A Real Options Approach to the Challenge of Financial Sustainability," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-37, May.
    17. Khraibani, R. & de Palma, A. & Picard, N. & Kaysi, I., 2016. "A new evaluation and decision making framework investigating the elimination-by-aspects model in the context of transportation projects' investment choices," Transport Policy, Elsevier, vol. 48(C), pages 67-81.
    18. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    19. Inese Mavlutova & Dzintra Atstaja & Janis Grasis & Jekaterina Kuzmina & Inga Uvarova & Dagnija Roga, 2023. "Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review," Energies, MDPI, vol. 16(8), pages 1-16, April.
    20. Henrik Andersson & Nicolas Treich, 2011. "The Value of a Statistical Life," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 17, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2238-:d:774620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.