IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1605-d755220.html
   My bibliography  Save this article

Effects of Unconventional Additives in Gasoline on the Performance of a Vehicle

Author

Listed:
  • Mao Lin

    (College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

  • Xiaoteng Zhang

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

  • Mingsheng Wen

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

  • Chuanqi Zhang

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

  • Xiangen Kong

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

  • Zhiyang Jin

    (College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

  • Zunqing Zheng

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

  • Haifeng Liu

    (State Key Laboratory of Engines, Tianjin University, No.92 Weijin Road, Nankai Distric, Tianjin 300072, China)

Abstract

In order to meet stricter emissions regulations and fuel consumption regulations, the upgrading of fuel quality has become one of the most important trends in the development of internal combustion engines. In this article, 89 # gasoline (G89) that is available on the Chinese market was selected as the base fuel, and five unconventional additives, ethyl tert-butyl ether (ETBE), N-Methylaniline, sec-butyl acetate, p-methylphenol and isobutanol, were added to the base fuel and named as G89-1, G89-2, G89-3, G89-4 and G89-5, respectively. The effects of these unconventional additives on a PFI vehicle were investigated. The test was carried out on a chassis dynamometer and the NEDC cycle was adopted to simulate driving conditions. The results show that, in terms of fuel consumption, G89-3 showed the best performance for decreasing fuel consumption. In terms of gaseous emissions, G89-4 decreased all four gaseous emissions, CO 2 , CO, THC and NOx, to a greater extent, which indicates that blending p-methylphenol into gasoline has a better potential for the vehicle to achieve cleaner emissions. In terms of acceleration performance, the five additives all shortened the acceleration time. The effects of the different additives on shortening acceleration time are basically consistent with the RON of the fuel.

Suggested Citation

  • Mao Lin & Xiaoteng Zhang & Mingsheng Wen & Chuanqi Zhang & Xiangen Kong & Zhiyang Jin & Zunqing Zheng & Haifeng Liu, 2022. "Effects of Unconventional Additives in Gasoline on the Performance of a Vehicle," Energies, MDPI, vol. 15(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1605-:d:755220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    2. Wen, Lan-bin & Xin, Chen-Ying & Yang, Shyue-Cheng, 2010. "The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission," Applied Energy, Elsevier, vol. 87(1), pages 115-121, January.
    3. Haifeng Liu & Xichang Wang & Diping Zhang & Fang Dong & Xinlu Liu & Yong Yang & Haozhong Huang & Yang Wang & Qianlong Wang & Zunqing Zheng, 2019. "Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle," Energies, MDPI, vol. 12(10), pages 1-21, May.
    4. Karavalakis, Georgios & Short, Daniel & Vu, Diep & Russell, Robert L. & Asa-Awuku, Akua & Jung, Heejung & Johnson, Kent C. & Durbin, Thomas D., 2015. "The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines," Energy, Elsevier, vol. 82(C), pages 168-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
    2. Sibel Osman & Olga Valerica Sapunaru & Ancaelena Eliza Sterpu & Timur Vasile Chis & Claudia I.Koncsag, 2023. "Impact of Adding Bioethanol and Dimethyl Carbonate on Gasoline Properties," Energies, MDPI, vol. 16(4), pages 1-13, February.
    3. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    4. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    5. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    6. Liu, Haoye & Li, Ziyang & Xu, Hongming & Ma, Xiao & Shuai, Shijin, 2020. "Nucleation mode particle evolution in a gasoline direct injection engine with/without a three-way catalyst converter," Applied Energy, Elsevier, vol. 259(C).
    7. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    8. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    9. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    10. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    11. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    12. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    13. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    14. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    15. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    16. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    17. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.
    18. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    19. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    20. Simona Silvia Merola & Adrian Irimescu & Silvana Di Iorio & Bianca Maria Vaglieco, 2017. "Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol," Energies, MDPI, vol. 10(7), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1605-:d:755220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.