IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8015-d956001.html
   My bibliography  Save this article

Optimal Energy Consumption Scheduler Considering Real-Time Pricing Scheme for Energy Optimization in Smart Microgrid

Author

Listed:
  • Fahad R. Albogamy

    (Computer Sciences Program, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

Energy consumption schedulers have been widely adopted for energy management in smart microgrids. Energy management aims to alleviate energy expenses and peak-to-average ratio (PAR) without compromising user comfort. This work proposes an energy consumption scheduler using heuristic optimization algorithms: Binary Particle Swarm Optimization (BPSO), Wind Driven Optimization (WDO), Genetic Algorithm (GA), Differential Evolution (DE), and Enhanced DE (EDE). The energy consumption scheduler based on these algorithms under a price-based demand response program creates a schedule of home appliances. Based on the energy consumption behavior, appliances within the home are classified as interruptible, noninterruptible, and hybrid loads, considered as scenario-I, scenario-II, and scenario-III, respectively. The developed model based on optimization algorithms is the more appropriate solution to achieve the desired objectives. Simulation results show that the expense and PAR of schedule power usage in each scenario are less compared to the without-scheduling case.

Suggested Citation

  • Fahad R. Albogamy, 2022. "Optimal Energy Consumption Scheduler Considering Real-Time Pricing Scheme for Energy Optimization in Smart Microgrid," Energies, MDPI, vol. 15(21), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8015-:d:956001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
    3. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    4. Kalim Ullah & Sajjad Ali & Taimoor Ahmad Khan & Imran Khan & Sadaqat Jan & Ibrar Ali Shah & Ghulam Hafeez, 2020. "An Optimal Energy Optimization Strategy for Smart Grid Integrated with Renewable Energy Sources and Demand Response Programs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    5. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    6. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    7. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).
    8. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    9. Xu, Xiaomin & Niu, Dongxiao & Xiao, Bowen & Guo, Xiaodan & Zhang, Lihui & Wang, Keke, 2020. "Policy analysis for grid parity of wind power generation in China," Energy Policy, Elsevier, vol. 138(C).
    10. Ali, M.M., 2007. "Differential evolution with preferential crossover," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1137-1147, September.
    11. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    12. Armin Mahmoudi & Leila Hashemi & Milad Jasemi & James Pope, 2021. "A comparison on particle swarm optimization and genetic algorithm performances in deriving the efficient frontier of stocks portfolios based on a mean‐lower partial moment model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5659-5665, October.
    13. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryline Chetto & Rola El Osta, 2023. "Earliest Deadline First Scheduling for Real-Time Computing in Sustainable Sensors," Sustainability, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    2. Kalim Ullah & Taimoor Ahmad Khan & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Basem Alamri & Faheem Ali & Sajjad Ali & Sheraz Khan, 2022. "Demand Side Management Strategy for Multi-Objective Day-Ahead Scheduling Considering Wind Energy in Smart Grid," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    4. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    5. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    6. Herodotos Herodotou, 2021. "Introduction to the Special Issue on Data-Intensive Computing in Smart Microgrids," Energies, MDPI, vol. 14(9), pages 1-3, May.
    7. Hossein Moayedi & Bao Le Van, 2022. "The Applicability of Biogeography-Based Optimization and Earthworm Optimization Algorithm Hybridized with ANFIS as Reliable Solutions in Estimation of Cooling Load in Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    8. Liu, Zeyu & Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2023. "Risk assessment and alleviation of regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 350(C).
    9. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    10. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    11. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    12. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    13. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    14. Sina Abbasi & Maryam Moosivand & Ilias Vlachos & Mohammad Talooni, 2023. "Designing the Location–Routing Problem for a Cold Supply Chain Considering the COVID-19 Disaster," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
    15. Yong Wang & Jingxin Zhou & Yaoyao Sun & Xiuwen Wang & Jiayi Zhe & Haizhong Wang, 2022. "Electric Vehicle Charging Station Location-Routing Problem with Time Windows and Resource Sharing," Sustainability, MDPI, vol. 14(18), pages 1-31, September.
    16. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    17. Fahad R. Albogamy & Ghulam Hafeez & Imran Khan & Sheraz Khan & Hend I. Alkhammash & Faheem Ali & Gul Rukh, 2021. "Efficient Energy Optimization Day-Ahead Energy Forecasting in Smart Grid Considering Demand Response and Microgrids," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    18. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    20. Danny García Sánchez & Alejandra Tabares & Lucas Teles Faria & Juan Carlos Rivera & John Fredy Franco, 2022. "A Clustering Approach for the Optimal Siting of Recharging Stations in the Electric Vehicle Routing Problem with Time Windows," Energies, MDPI, vol. 15(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8015-:d:956001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.