IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7277-d932962.html
   My bibliography  Save this article

Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations

Author

Listed:
  • Katarzyna Turoń

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasińskiego Street, 40-019 Katowice, Poland)

Abstract

Car-sharing systems, i.e., automatic, short-time car rentals, are among the solutions of the new mobility concept, which in recent years has gained popularity around the world. With the growing interest in services in society, their demands for the services offered to them have also increased. Since cars play a key role in car-sharing services, the fleet of vehicles should be properly adapted to the needs of customers using the systems. Due to the literature gap related to the procedure of proper selection of vehicles for car sharing and the market need for car-sharing service operators, this work has been devoted to the selection of car models for car sharing from the perspective of users constantly using the systems (regular users). This paper considered the case of the Polish who are constantly using car-sharing service systems. Vehicle selection was classified as a multi-faceted, complex problem, which is why one of the ELECTRE III multi-criteria decision support methods was used for this study. This study focused on the classification of vehicles from the user’s perspective. Twelve modern and most popular car models in 2021 with internal combustion, electric and hybrid engines were considered. The results indicate that the best choice from the point of view of regular customers is large cars (representing vehicle classes C and D), with a large luggage compartment capacity, the highest possible ratio of engine power to vehicle weight, and the ratio of engine power to energy consumption. Importantly, small urban vehicles, which ideologically should be associated with car-sharing services due to occupying as little urban space as possible, were classified as the worst in the ranking. The results support car-sharing operators during the process of completing or upgrading their vehicle fleets.

Suggested Citation

  • Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7277-:d:932962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaheen, Susan & Martin, Elliot & Totte, Hannah, 2020. "Zero-emission vehicle exposure within U.S. carsharing fleets and impacts on sentiment toward electric-drive vehicles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt95j7g71k, Institute of Transportation Studies, UC Berkeley.
    2. Andrzej Szałek & Ireneusz Pielecha & Wojciech Cieslik, 2021. "Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC)," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    4. Schwieterman, Joseph P. & Bieszczat, Alice, 2017. "The cost to carshare: A review of the changing prices and taxation levels for carsharing in the United States 2011–2016," Transport Policy, Elsevier, vol. 57(C), pages 1-9.
    5. Luri Minami, Adriana & Ramos, Carla & Bruscato Bortoluzzo, Adriana, 2021. "Sharing economy versus collaborative consumption: What drives consumers in the new forms of exchange?," Journal of Business Research, Elsevier, vol. 128(C), pages 124-137.
    6. Paweł Ziemba & Izabela Gago, 2022. "Compromise Multi-Criteria Selection of E-Scooters for the Vehicle Sharing System in Poland," Energies, MDPI, vol. 15(14), pages 1-26, July.
    7. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    8. Wenxiang Li & Ye Li & Jing Fan & Haopeng Deng, 2017. "Siting of Carsharing Stations Based on Spatial Multi-Criteria Evaluation: A Case Study of Shanghai EVCARD," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    9. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    10. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Dowling, Robyn & Kent, Jennifer, 2015. "Practice and public–private partnerships in sustainable transport governance: The case of car sharing in Sydney, Australia," Transport Policy, Elsevier, vol. 40(C), pages 58-64.
    12. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.
    13. Quirós, Cipriano & Portela, Javier & Marín, Raquel, 2021. "Differentiated models in the collaborative transport economy: A mixture analysis for Blablacar and Uber," Technology in Society, Elsevier, vol. 67(C).
    14. Fanchao Liao & Eric Molin & Harry Timmermans & Bert van Wee, 2020. "Carsharing: the impact of system characteristics on its potential to replace private car trips and reduce car ownership," Transportation, Springer, vol. 47(2), pages 935-970, April.
    15. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2019. "Operational Aspects of Electric Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 12(24), pages 1-18, December.
    16. Becker, Henrik & Ciari, Francesco & Axhausen, Kay W., 2017. "Comparing car-sharing schemes in Switzerland: User groups and usage patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Turoń, 2022. "Multi-Criteria Analysis of the Selection of Vehicles with Electric, Hybrid, and Conventional Drive for Car-Sharing Services from the Perspective of Polish Occasional System Users," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.
    2. Katarzyna Turoń, 2022. "Multi-Criteria Analysis of the Selection of Vehicles with Electric, Hybrid, and Conventional Drive for Car-Sharing Services from the Perspective of Polish Occasional System Users," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2022. "What Car for Car-Sharing? Conventional, Electric, Hybrid or Hydrogen Fleet? Analysis of the Vehicle Selection Criteria for Car-Sharing Systems," Energies, MDPI, vol. 15(12), pages 1-14, June.
    4. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    5. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    6. Carrese, Stefano & D'Andreagiovanni, Fabio & Giacchetti, Tommaso & Nardin, Antonella & Zamberlan, Leonardo, 2021. "An optimization model and genetic-based matheuristic for parking slot rent optimization to carsharing," Research in Transportation Economics, Elsevier, vol. 85(C).
    7. Al-Garawi, Najah & Kamargianni, Maria, 2021. "Women's modal switching behavior since driving is allowed in Saudi Arabia," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Wojciech Cieslik & Weronika Antczak, 2023. "Research of Load Impact on Energy Consumption in an Electric Delivery Vehicle Based on Real Driving Conditions: Guidance for Electrification of Light-Duty Vehicle Fleet," Energies, MDPI, vol. 16(2), pages 1-19, January.
    9. Donald A. Chapman & Johan Eyckmans & Karel Van Acker, 2020. "Does Car-Sharing Reduce Car-Use? An Impact Evaluation of Car-Sharing in Flanders, Belgium," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    10. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    12. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
    13. Katarzyna Turoń, 2022. "The Expectations towards Cars to Be Used in Car-Sharing Services—The Perspective of the Current Polish Non-Users," Energies, MDPI, vol. 15(23), pages 1-17, November.
    14. Andrzej Kubik & Katarzyna Turoń & Piotr Folęga & Feng Chen, 2023. "CO 2 Emissions—Evidence from Internal Combustion and Electric Engine Vehicles from Car-Sharing Systems," Energies, MDPI, vol. 16(5), pages 1-21, February.
    15. Katarzyna Turoń, 2022. "Carsharing Vehicle Fleet Selection from the Frequent User’s Point of View," Energies, MDPI, vol. 15(17), pages 1-14, August.
    16. Aaron Kolleck, 2021. "Does Car-Sharing Reduce Car Ownership? Empirical Evidence from Germany," Sustainability, MDPI, vol. 13(13), pages 1-17, July.
    17. Burghard, Uta & Scherrer, Aline, 2022. "Sharing vehicles or sharing rides - Psychological factors influencing the acceptance of carsharing and ridepooling in Germany," Energy Policy, Elsevier, vol. 164(C).
    18. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    19. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    20. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7277-:d:932962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.