IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5954-d890259.html
   My bibliography  Save this article

Research on Energy Structure Optimization and Carbon Emission Reduction Path in Beijing under the Dual Carbon Target

Author

Listed:
  • Yu Hu

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Yuanying Chi

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Wenbing Zhou

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Zhengzao Wang

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Yongke Yuan

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Ruoyang Li

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

Abstract

In the context of China’s dual carbon target, Beijing, as the capital of China, should play an exemplary role in carbon emission reduction. On the premise of optimizing high-emission sectors such as coal and industry, Beijing is still a certain distance from the goal of carbon neutrality. Therefore, on the basis of Beijing’s energy resource endowment, considering Beijing’s economic development and carbon neutrality goals and scientifically and reasonably planning Beijing’s carbon emission reduction path are important tasks. We construct an energy structure optimization model to achieve the goal of carbon neutrality by 2050. The model analysis concludes that the residents and transportation sectors will account for a large proportion of Beijing’s total carbon emissions in the future. To achieve the goal of carbon neutrality, the electricity substitution of fossil energy and the high proportion of external power are two necessary measures, and the optimal path of carbon emission reduction is proposed.

Suggested Citation

  • Yu Hu & Yuanying Chi & Wenbing Zhou & Zhengzao Wang & Yongke Yuan & Ruoyang Li, 2022. "Research on Energy Structure Optimization and Carbon Emission Reduction Path in Beijing under the Dual Carbon Target," Energies, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5954-:d:890259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue Ma & Xiaodong Chu, 2022. "Optimizing Low-Carbon Pathway of China’s Power Supply Structure Using Model Predictive Control," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    3. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    4. Bo Wang & Limao Wang & Shuai Zhong & Ning Xiang & Qiushi Qu, 2022. "Low-Carbon Transformation of Electric System against Power Shortage in China: Policy Optimization," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Fan, Jingjing & Wang, Jianliang & Liu, Mingming & Sun, Wangmin & Lan, Zhixuan, 2022. "Scenario simulations of China's natural gas consumption under the dual-carbon target," Energy, Elsevier, vol. 252(C).
    6. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    7. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    3. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    4. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    5. Jian Zhang & Jingyang Liu & Li Dong & Qi Qiao, 2022. "CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
    6. Yang Zhang & Zijun Ma & Meng Sun & Jianing Song & Yang Yang & Qiang Li & Ying Jing, 2023. "Quantitatively Evaluating the Ecological Product Value of Nine Provinces in the Yellow River Basin from the Perspective of the Dual-Carbon Strategy," Land, MDPI, vol. 12(2), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Yang & Shuning Wang & Zhihu Zhang & Kai Lin & Minggang Zheng, 2023. "Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    3. Wang, Peng & Huang, Ren & Zhang, Sufang & Liu, Xiaoli, 2023. "Pathways of carbon emissions reduction under the water-energy constraint: A case study of Beijing in China," Energy Policy, Elsevier, vol. 173(C).
    4. Mantas Svazas & Yuriy Bilan & Valentinas Navickas, 2024. "Research Directions of the Energy Transformation Impact on the Economy in the Aspect of Asset Analysis," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    5. Lan, Bingying & Dong, Ke & Li, Li & Lei, Yalin & Wu, Sanmang & Hua, Ershi & Sun, Ruyi, 2023. "CO2 emission reduction pathways of iron and steel industry in Shandong based on CO2 emission equity and efficiency," Resources Policy, Elsevier, vol. 81(C).
    6. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    7. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Phimsupha Kokchang & Yuan Zhao & Suthirat Kittipongvises, 2023. "Understanding Citizens’ Perceptions and Attitudes toward Energy Restructuring under China’s NDC for Quality of Life: A Case of Linfen City," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 566-576, September.
    9. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    10. Jiang, Tangyang & Cao, Chi & Lei, Leyuan & Hou, Jie & Yu, Yang & Jahanger, Atif, 2023. "Temporal and spatial patterns, efficiency losses and impact factors of energy mismatch in China under environmental constraints," Energy, Elsevier, vol. 282(C).
    11. Victor I. Espinosa & José Antonio Peña-Ramos & Fátima Recuero-López, 2021. "The Political Economy of Rent-Seeking: Evidence from Spain’s Support Policies for Renewable Energy," Energies, MDPI, vol. 14(14), pages 1-16, July.
    12. Yiqun Wu & Yuan Sun & Congyue Zhou & Yonghua Li & Xuanli Wang & Huifang Yu, 2023. "Spatial–Temporal Characteristics of Carbon Emissions in Mixed-Use Villages: A Sustainable Development Study of the Yangtze River Delta, China," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    13. Sylwia Mrozowska & Jan A. Wendt & Krzysztof Tomaszewski, 2021. "The Challenges of Poland’s Energy Transition," Energies, MDPI, vol. 14(23), pages 1-22, December.
    14. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    15. Hui Wang & Jinzhuo Wu & Wenshu Lin & Zhaoping Luan, 2023. "Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    16. Zhang, Chonghui & Li, Xiangwen & Sun, Yunfei & Chen, Ji & Streimikiene, Dalia, 2023. "Policy modeling consistency analysis during energy crises: Evidence from China's coal power policy," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    17. Zhang, Wen-Wen & Zhao, Bin & Ding, Dian & Sharp, Basil & Gu, Yu & Xu, Shi-Chun & Xing, Jia & Wang, Shu-Xiao & Liou, Kuo-Nan & Rao, Lan-Lan, 2021. "Co-benefits of subnationally differentiated carbon pricing policies in China: Alleviation of heavy PM2.5 pollution and improvement in environmental equity," Energy Policy, Elsevier, vol. 149(C).
    18. Zhongliang Meng & Yun Chen & Shizhen Li, 2022. "The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-12, February.
    19. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Naima Lassoued & Imen Khanchel, 2023. "Voluntary CSR disclosure and CEO narcissism: the moderating role of CEO duality and board gender diversity," Review of Managerial Science, Springer, vol. 17(3), pages 1075-1123, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5954-:d:890259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.